精英家教网 > 初中数学 > 题目详情
8.如图,是一个由4个相同的正方体组成的立体图形,它的左视图是(  )
A.B.C.D.

分析 根据从左边看得到的图形是左视图,可得答案.

解答 解:从左边看上下各一个小正方形,
故选:B.

点评 本题考查了简单组合体的三视图,从左边看得到的图形是左视图.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.如图,△ABC内接于⊙O,直径AB=8,D为BA延长线上一点且AD=4,E为线段CD上一点,满足∠EAC=∠BAC,则AE=2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为2个单位长度/秒,点在弧线上的速度为$\frac{2π}{3}$个单位长度/秒,则2017秒时,点P的坐标是(  )
A.(2017,0)B.(2017,$\sqrt{3}$)C.(2017,-$\sqrt{3}$)D.(2016,0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在平面直角坐标系内,双曲线:y=$\frac{k}{x}$(x>0)分别与直线OA:y=x和直线AB:y=-x+10,交于C,D两点,并且OC=3BD.
(1)求出双曲线的解析式;
(2)连结CD,求四边形OCDB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.
(1)求证:四边形ABCD是矩形;
(2)如果AE=EG,求证:AC2=BC•BG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,直角三角形OAB的顶点O在坐标原点,A(2,0),B(0,2$\sqrt{3}$),将△OAB沿y轴翻折,得△OCB.
(1)求OCB的度数;
(2)动点P在线段CA上从点C向点A运动,PD⊥BC于点D,把△PCD沿y轴翻折,得△QAE,设△ABC被△PCD和△QAE盖住部分的面积为S1,未被盖住的部分的面积为S2
①设CP=a(a>0),用含a的代数式分别表示S1,S2
②直接写出当S1=S2时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).
(1)在图中画出平移后的△A1B1C1
(2)直接写出△A1B1C1各顶点的坐标.A1(4,-2);B1(1,-4);C1(2,-1);
(3)求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如果3.14×10n是一个5位整数,则n为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.完成以下证明,并在括号内填写理由.
已知:如图所示,∠1=∠2,∠A=∠3.
求证:∠ABC+∠4+∠D=180°.
证明:∵∠1=∠2
∴AB∥CE(内错角相等,两直线平行)
∴∠A=∠4(两直线平行,内错角相等)
∠ABC+∠BCE=180°(两直线平行,同旁内角互补)
即∠ABC+∠ACB+∠4=180°
∵∠A=∠3
∴∠3=∠4
∴AC∥DE
∴∠ACB=∠D(两直线平行,同位角相等)
∴∠ABC+∠4+∠D=180°.

查看答案和解析>>

同步练习册答案