精英家教网 > 初中数学 > 题目详情
15.在数-5,1,-3,-2中任取三个数相乘,最小的积是-30.

分析 取出三个数相乘,使其积最小即可.

解答 解:根据题意得:(-5)×(-3)×(-2)=-30,
故答案为:-30

点评 此题考查了有理数的乘法,以及有理数的大小比较,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.观察下列等式:
$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,
将以上三个等式两边分别相加得:
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$.
(1)猜想并写出:$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$;
(2)直接写出下列各式的计算结果:
①$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2011×2012}$=$\frac{2011}{2012}$;
②$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n×(n+1)}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.观察下列等式:
22-12=3=(2+1)(2-1),
32-22=5=(3+2)(3-2),
42-32=7=(4+3)(4-3),
试计算:19512-19502+19532-19522+…+20142-20132

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.观察下面的单项式:x,-2x2,4x3,-8x4…根据你发现的规律,写出第6个式子是-32x6,第n个式子是(-1)n+12n-1xn

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知$\frac{1}{a}+\frac{1}{2b}$=3,则代数式$\frac{2a-5ab+4b}{4ab-3a-6b}$的值为$-\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.配方法不仅可以用来解一元二次方程,还可以用来解决很多问题.
例如:因为3a2≥0,所以3a2-1≥-1,即:3a2-1就有最小值-1,只有当a=0时,才能得到这个式子的最小值-1.同样,因为-3a2≤0,所以-3a2+1≤1,即:-3a2+1就有最大值1,只有当a=0时,才能得到这个式子的最大值1.
(1)当x=-1时,代数式-2(x+1)2-1有最大值(填“大”或“小”)值为-1
当x=-1时,代数式2x2+4x+1有最小值(填“大”或“小”)值为-1
(2)在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC.
①试写出四边形DFCE的面积S(cm2)与时间t(s)之间的函数关系式并写出自变量t的取值范围;
②四边形DFCE的面积S(cm2)有最大值吗?有最小值吗?若有,求出它的最值,并求出此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.设x1、x2是一元二次方程x2+5x-2013=0的两个实数根,则x1(x22+4x2-2013)的值为2013.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,OA=OB,AC=BD,且OA⊥AC,OB⊥BD,M是CD中点.求证:OM是CD的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知A=m2+2n2-mn,B=m2-3n2-mn,求A-B,如果求2A-B呢?

查看答案和解析>>

同步练习册答案