精英家教网 > 初中数学 > 题目详情

作业宝如图,在?ABCD中,点F是边BC的中点,连接AF并延长交DC的延长线于点E,连接AC、BE.
(1)求证:CE=CD;
(2)若∠AFC=2∠D,则四边形ABEC是怎样的特殊四边形?请证明你的结论.

(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠ABF=∠ECF,
∵点F是边BC的中点,
∴BF=CF,
在△ABF和△CEF中,

∴△ABF≌△ECF(ASA),
∴CE=AB,
∴CE=CD;

(2)四边形ABEC是矩形.
理由:∵AB∥CD,AB=CE,
∴四边形ABEC是平行四边形,
∴AE=2AF,BC=2BF,
∵四边形ABCD是平行四边形,
∴∠ABF=∠D,
∵∠AFC=2∠D,∠AFC=∠ABF+∠BAF,
∴∠ABF=∠BAF,
∴AF=BF,
∴AE=BC,
∴四边形ABEC是矩形.
分析:(1)由在?ABCD中,点F是边BC的中点,易证得△ABF≌△ECF,可得CE=AB,继而可证得结论;
(2)由(1)易得四边形ABEC是平行四边形,又由∠AFC=2∠D,易证得AF=BF,即可得AE=BC,证得四边形ABEC是矩形.
点评:此题考查了平行四边形的性质、全等三角形的判定与性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在?ABCD中,对角线AC、BD相交于点O,AB=
29
,AC=4,BD=10.
问:(1)AC与BD有什么位置关系?说明理由.
(2)四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在?ABCD中,∠A的平分线交BC于点E,若AB=10cm,AD=14cm,则EC=
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春一模)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在?ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•犍为县模拟)甲题:已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
乙题:如图,在?ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H.
(1)求证:△BAE∽△BCF.
(2)若BG=BH,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于点O,连接CE,则△CBE的周长是
2
13
+4
2
13
+4

查看答案和解析>>

同步练习册答案