精英家教网 > 初中数学 > 题目详情

如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:
①∠BOE=70°;
②OF平分∠BOD;
③∠POE=∠BOF;
④∠POB=2∠DOF.
其中正确结论有________填序号)

①②③
分析:由于AB∥CD,则∠ABO=∠BOD=40°,利用平角等于得到∠BOC=140°,再根据角平分线定义得到∠BOE=70°;利用OF⊥OE,可计算出∠BOF=20°,则∠BOF=∠BOD,即OF平分∠BOD; 利用OP⊥CD,可计算出∠POE=20°,则∠POE=∠BOF; 根据∠POB=90°-∠POE=70°,∠DOF=20°,可对④不正确.
解答:∵AB∥CD,
∴∠ABO=∠BOD=40°,
∴∠BOC=180°-40°=140°,
∵OE平分∠BOC,
∴∠BOE=×140°=70°;所以①正确;
∵OF⊥OE,
∴∠EOF=90°,
∴∠BOF=90°-70°=20°,
∴∠BOF=∠BOD,所以②正确;
∵OP⊥CD,
∴∠COP=90°,
∴∠POE=90°-∠EOC=20°,
∴∠POE=∠BOF; 所以③正确;
∴∠POB=90°-∠POE=70°,
而∠DOF=20°,所以④错误.
故答案为①②③.
点评:本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB∥CD,AD与BC相交于点E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、如图,AB∥CD,P是BC上的一个动点,设∠CDP=∠1,∠CPD=∠2,请你猜想出∠1、∠2与∠B之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB∥CD,∠1=58°,则∠2的度数是(  )

查看答案和解析>>

同步练习册答案