精英家教网 > 初中数学 > 题目详情
如图,△ABC经过相似变换得△DEF.若∠ABC=20°,∠BCA=40°,AB:DE=2:1,则∠EDF的度数是
120°
120°
分析:由相似变换可得△ABC∽△EDF,由相似三角形的性质:对应角相等即可求出∠EDF的度数.
解答:解:∵,△ABC经过相似变换得△DEF.
∴△ABC∽△EDF,
∵AB:DE=2:1,
∴∠BAC=∠EDF,
∵∠ABC=20°,∠BCA=40°,
∴∠EDF=∠BAC=180°-20°-40°=120°,
故答案为120°.
点评:本题考查了特殊的相似:位似,以及相似三角形的性质和三角形的内角和定理的运用,题目比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC经过旋转变换得到的.
(1)问由△ABC旋转得到的△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;
(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1、△ABC分别按顺时针、逆时针各旋转90°的两个三角形,并写出变换后与A1相对应点A2的坐标;
(3)利用变换前后所形成图案证明勾股定理(设△ABC两直角边为a、b,斜边为c).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,AC=3
3
,DC=3,O是边AB上一动点(O与点A和B不重合),以OA为半径的⊙O与AB相交于点E.
(1)若⊙O经过点D,求证:BC与⊙O相切;
(2)试求在(1)中⊙O的半径OA的长度;
(3)请分别写出⊙O与BC所在直线相交和相离时OA的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC经过旋转变换得到的.

(1)问由△ABC旋转得到的△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;
(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1、△ABC分别按顺时针、逆时针各旋转90°的两个三角形,并写出变换后与A1相对应点A2的坐标;
(3)利用变换前后所形成图案证明勾股定理(设△ABC两直角边为,斜边为).

查看答案和解析>>

科目:初中数学 来源:2012届江西省景德镇市九年级第二次质量检测数学卷(带解析) 题型:解答题

如图,在平面直角坐标系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC经过旋转变换得到的.

(1)问由△ABC旋转得到的△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;
(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1、△ABC分别按顺时针、逆时针各旋转90°的两个三角形,并写出变换后与A1相对应点A2的坐标;
(3)利用变换前后所形成图案证明勾股定理(设△ABC两直角边为,斜边为).

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省景德镇市九年级第二次质量检测数学卷(解析版) 题型:解答题

如图,在平面直角坐标系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC经过旋转变换得到的.

(1)问由△ABC旋转得到的△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;

(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1、△ABC分别按顺时针、逆时针各旋转90°的两个三角形,并写出变换后与A1相对应点A2的坐标;

(3)利用变换前后所形成图案证明勾股定理(设△ABC两直角边为,斜边为).

 

查看答案和解析>>

同步练习册答案