精英家教网 > 初中数学 > 题目详情
如图,AB为弦,直线BC是⊙O的切线,OC交AB于P,PC=BC.
(1)求证:OA⊥OC;
(2)已知⊙O的半径为3,CP=4,求弦AB的长.
(1)证明:连接OB,
∵OA=OB,CP=CB,
∴∠A=∠OBA,∠CPB=∠CBP,
∵∠APO=∠CPB,
∴∠APO=∠CBP,
∵CB切⊙O于B,
∴∠OBC=90°,
即∠A+∠APO=∠CBP+∠OBA=90°,
∴∠AOC=180°-90°=90°,
∴OA⊥OC.

(2)延长CO交⊙O于Q,
∵CP=CB,CP=4,
∴BC=4,
∵CB是⊙O的切线,CMQ是圆O的割线,
由切割线定理得:CB2=CM•CQ,
∴42=CM(CM+3+3),
解得:CM=2,
∴PM=2,OP=3-2=1,
在△AOP中,由勾股定理得:AP=
AO2+OP2
=
10

由相交弦定理得:AP×BP=MP×PQ,
10
×BP=2×(3+1),
∴BP=
4
10
5

∴AB=AP+BP=
10
+
4
10
5
=
9
10
5
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△AOB中,OA=OB=10,∠AOB=120°,以O为圆心,5为半径的⊙O与OA、OB相交.
求证:AB是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是(  )
A.DE=DOB.AB=ACC.CD=DBD.ACOD

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,P是⊙O的直径CB延长线上的一点,PA是⊙O的切线,切点为A,∠P=20°,则∠ABP=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知⊙O过点D(4,3),点H与点D关于y轴对称,过H作⊙O的切线交y轴于点A(如图1).
(1)求⊙O半径;
(2)sin∠HAO的值;
(3)如图2,设⊙O与y轴正半轴交点P,点E、F是线段OP上的动点(与P点不重合),连接并延长DE,DF交⊙O于点B,C,直线BC交y轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)先化简,再求值:(
2
a-1
-
1
a+1
)÷
1
a+1
,其中a=
2
+1;
(2)请你类比一条直线和一个圆的三种位置关系,在图①、②、③中,分别各画出一条直线,使它与两个圆都相离、都相切、都相交,并在图④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,O、D分别为AB、BC上的点.经过A、D两点的⊙O分别交AB、AC于点E、F,且D为
EF
的中点.
(1)求证:BC与⊙O相切;
(2)当AD=2
3
,∠CAD=30°时.求
AD
的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=______.

查看答案和解析>>

同步练习册答案