| A. | $\frac{3}{2}$•($\frac{\sqrt{3}}{2}$)2015 | B. | $\frac{3}{2}$•($\frac{\sqrt{3}}{2}$)2016 | C. | $\frac{3}{2}$•($\frac{\sqrt{3}}{2}$)2017 | D. | $\frac{3}{2}$•($\frac{\sqrt{3}}{2}$)2018 |
分析 根据含30°的直角三角形的性质结合图形即可得到规律“OAn=($\frac{\sqrt{3}}{2}$)nOA=2($\frac{\sqrt{3}}{2}$)n,依此规律即可解决问题.
解答 解:∵∠AOB=30°,点A坐标为(2,0),
∴OA=2,
∴OA1=$\frac{\sqrt{3}}{2}$OA=$\sqrt{3}$,OA2=$\frac{\sqrt{3}}{2}$OA1═$\frac{3}{2}$,OA3=$\frac{\sqrt{3}}{2}$OA2═$\frac{3\sqrt{3}}{4}$,OA4=$\frac{\sqrt{3}}{2}$OA3═$\frac{9}{8}$,…,
∴OAn=($\frac{\sqrt{3}}{2}$)nOA=2($\frac{\sqrt{3}}{2}$)n.
∴OA2018=2×($\frac{\sqrt{3}}{2}$)2018=$\frac{3}{2}$•($\frac{\sqrt{3}}{2}$)2016
故选B.
点评 本题考查了规律型中点的坐标以及含30度角的直角三角形,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”结合图形找出变化规律OAn=($\frac{\sqrt{3}}{2}$)nOA=2($\frac{\sqrt{3}}{2}$)n是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (2017,0) | B. | (2017,$\sqrt{3}$) | C. | (2017,-$\sqrt{3}$) | D. | (2016,0) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com