精英家教网 > 初中数学 > 题目详情

在△ABC中,已知∠ABC=60°,∠ACB=50°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点.
求∠ABE、∠ACF和∠BHC的度数.

解:∵BE是AC上的高,
∴∠AEB=90°,
∵∠ABC=60°,∠ACB=50°,
∴∠A=180°-60°-50°=70°,
∴∠ABE=180°-90°-70°=20°,
∵CF是AB上的高,
∴∠AFC=90°,
∴∠ACF=180°-90°-70°=20°,
∵∠ABE=20°,
∴∠EBC=∠ABC-∠ABE=60°-20°=40°,
∵∠ACF=20°,∠ACB=50°,
∴∠BCH=30°,
∴∠BHC=180°-40°-30°=110°.
分析:首先根据三角形的高可得∠AFC=∠AEB=90°,再利用三角形内角和可以算出∠ABE、∠ACF的度数,再根据角的和差关系算出∠HBC和∠HCB的度数,再利用三角形内角和定理可得∠BHC的度数.
点评:此题主要考查了三角形的高,三角形内角和定理,关键是熟练掌握三角形内角和为180°,理清角之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、(1)在△ABC中,已知∠B=∠C+20°,∠A+∠B=140°,求△ABC的各个内角的度数是多少?
(2)如图,将△ABC纸片沿MN折叠所得的粗实线围成的图形的面积与原△ABC的面积之比为3:4,且图中3个阴影三角形的面积之和为12cm2,则重叠部分的面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•雅安)在△ABC中,已知∠A、∠B都是锐角,且sinA=
3
2
,tanB=1,则∠C的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知∠A=80°,则∠B、∠C的角平分线相交所成的钝角为
130°
130°

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.在下列结论中:①∠C=72°;②BD是∠ABC的平分线;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.上述结论中,正确的有
①②④⑤
①②④⑤
.(填写序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知∠A=∠C-∠B,且∠A=70°,则∠B的度数=
20°
20°

查看答案和解析>>

同步练习册答案