精英家教网 > 初中数学 > 题目详情
由公式x2+(a+b)x+ab=(x+a)(x+b)可分解因式:
x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)
x2-5x+6=x2+(-2-3)x+(-2)×(-3)=(x-2)(x-3)
依照这种变形,分解因式:
(1)x2+7x+6;
(2)x2+7x-8.
分析:(1)依据已知将方程变形,即可得到分解的结果;
(2)依据已知将方程变形,即可得到分解的结果.
解答:解:(1)x2+7x+6
=x2+(1+6)x+1×6
=(x+1)(x+6);

(2)x2+7x-8
=x2+(-1+8)x-1×8
=(x+8)(x-1).
点评:此题考查了因式分解-十字相乘法,弄清题意是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读下面的材料,再解答下面的各题.
在平面直角坐标系中,有AB两点,A(x1,y1)、B(x2,y2)两点间的距离用|AB|表示,则有|AB|=
(x1-x2)2+(y1-y2)2
,下面我们来证明这个公式:证明:如图1,过A点作X轴的垂线,垂足为C,则C点的横坐标为x1,过B点作X轴的垂线,垂足为D,则D点的横坐标为x2,过A点作BD的垂线,垂足为E,则E点的横坐标为x2,纵坐标为y1.∴|AE|=|CD|=|x1-x2|
|BE|=|BD|-|DE|=|y2-y1|=||y1-y2|
在Rt△AEB中,由勾股定理得|AB|2=|AE|2+|BE|2=|x1-x2|2+|y1-y2|2
∴|AB|=
(x1-x2)2+(y1-y2)2
(因为|AB|表示线段长,为非负数)
注:当A、B在其它象限时,同理可证上述公式成立.
(1)在平面直角坐标系中有P(4,6)、Q(2,-3)两点,求|PQ|.
(2)如图2,直线L1与L2相交于点C(4,6),L1、L2与X轴分别交于B、A两点,其坐标B(8,0)、A(1,0),直线L3平行于X轴,与L1、L2分别交于E、D两点,且|DE|=
6
7
,求线段|DA|的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2001•黄冈)先阅读下列第(1)题的解答过程:
(1)已知a,β是方程x2+2x-7=0的两个实数根,求a2+3β2+4β的值.
解法1:∵a,β是方程x2+2x-7=0的两个实数根,
∴a2+2a-7=0,β2+2β-7=0,且a+β=-2.
∴a2=7-2a,β2=7-2β.
∴a2+3β2+4β=7-2a+3(7-2β)+4β=28-2(a+β)=28-2×(-2)=32.
解法2:由求根公式得a=1+2
2
,β=-1-2
2

∴a2+3β2+4β=(-1+2
2
2+3(-1-2
2
2+4(-1-2
2

=9-4
2
+3(9+4
2
)-4-8
2
=32.
当a=-1-2
2
,β=-1+2
2
时,同理可得a2+3β2+4β=32.
解法3:由已知得a+β=-2,aβ=-7.
∴a22=(a+β)2-2aβ=18.
令a2+3β2+4β=A,β2+3a2+4a=B.
∴A+B=4(a22)+4(a+β)=4×18+4×(-2)=64.①
A-B=2(β2-a2)+4(β-a)=2(β+a)(β-a)+4(β-a)=0.②
①+②,得2A=64,∴A=32.
请仿照上面的解法中的一种或自己另外寻注一种方法解答下面的问题:
(2)已知x1,x2是方程x2-x-9=0的两个实数根,求代数式x13+7x22+3x2-66的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:在一元二次方程ax2+bx+c=0(a≠0)中,如果b2-4ac≥0,记它的两个根为x1,x2,由求根公式计算两个根的和与积为x1+x2=-
b
a
,x1•x2=
c
a
,一元二次方程两个根的和、两个根的积是由方程的系数确定的,这就是一元二次方程根与系数的关系.根据这段材料解决下列问题:
(1)设方程2x2-4x-1=0的两个根分别为x1,x2,则x1+x2=
2
2
,x1•x2=
-
1
2
-
1
2

(2)如果方程x2+bx-1=0的一个根是2+
3
,求方程的另一个根和实数b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

由公式x2+(a+b)x+ab=(x+a)(x+b)可分解因式:
x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)
x2-5x+6=x2+(-2-3)x+(-2)×(-3)=(x-2)(x-3)
依照这种变形,分解因式:
(1)x2+7x+6;
(2)x2+7x-8.

查看答案和解析>>

同步练习册答案