科目:初中数学 来源:三点一测丛书 九年级数学 上 (江苏版课标本) 江苏版课标本 题型:044
我们学习了菱形,知道菱形的面积计算有一个比较特殊的方法,就是S菱形等于对角线乘积的一半.其实不仅菱形是这样的,只要对角线互相垂直的四边形面积均等于对角线乘积的一半,即S菱=ab(其中a、b为两对角线的长度).
证明如下:如图,在四边形ABCD中,对角线AC⊥BD,垂足为P.求证:S四边形ABCD=AC·BD.
证明:
解答问题:
(1)上述证明得到的性质可叙述为:________.
(2)已知:如图,等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,且相交于点P,AD=3 cm,BC=7 cm,利用上述性质求梯形的面积.
查看答案和解析>>
科目:初中数学 来源:2013年北京市海淀区中考二模数学试卷(带解析) 题型:解答题
如图1,四边形ABCD中,、为它的对角线,E为AB边上一动点(点E不与点A、B重合),EF∥AC交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD为“四边形”, 此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为 .
(1)等腰梯形 (填“是”或 “不是”)“四边形”;
(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有 个.
查看答案和解析>>
科目:初中数学 来源:2013年北京市海淀区中考二模数学试卷(解析版) 题型:解答题
如图1,四边形ABCD中,、为它的对角线,E为AB边上一动点(点E不与点A、B重合),EF∥AC交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD为“四边形”, 此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为 .
(1)等腰梯形 (填“是”或 “不是”)“四边形”;
(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有 个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com