精英家教网 > 初中数学 > 题目详情

如图,PA、PB切⊙O于A、B,若∠APB=60°,⊙O半径为3,求阴影部分面积.

解:连接PO与AO,
∵PA、PB切⊙O于A、B,若∠APB=60°,
∴OA⊥PA,∠APO=∠APB=30°,
∴∠AOP=60°,
∵⊙O半径为3,
∴OA=3,PO=6,
∴PA==3
∴S△PAO=AO•PA=×3×3=
S扇形AOC==π,
∴S阴影=2×(S△PAO-S扇形AOC)=2×(-π)=9-3π.
∴阴影部分面积为:9-3π.
分析:首先根据切线长定理,可求得∠AOP的度数与OA⊥PA,又由直角三角形的性质,可求得PA的长,然后求得△PAO与扇形AOC的面积,由S阴影=2×(S△PAO-S扇形AOC)则可求得结果.
点评:此题考查了切线长定理,直角三角形的性质,扇形面积公式等知识.此题难度不大,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,PA、PB切⊙O于A、B两点,若∠APB=60°,⊙O的半径为3,则阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,PA、PB切⊙O于点A、B,AC是⊙O的直径,且∠BAC=35°,则∠P=
70
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,PA、PB切⊙O于A、B,PO及其延长线分别交⊙O于C、D,AE为⊙O的直径,连接AB、AC,下列结论:①
CB
=
DE
;②∠ABP=∠DOE;③AC平分∠PAB;④∠CAB=∠BAE;其中正确的有(  )
A、①②③B、①②③④
C、①②④D、②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA、PB切⊙O于A、B两点,C为优
ACB
一点,已知∠BCA=50°,则∠APB=
80°
80°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2-mx+m-1=0的两个根,求△PCD的周长.

查看答案和解析>>

同步练习册答案