精英家教网 > 初中数学 > 题目详情

已知等腰三角形顶角等于底角的2倍,则顶角为________度.

90
分析:已知等腰三角形顶角和底角的关系,可以设底角为k°,根据三角形的内角和等于180°列方程即可求顶角的度数.
解答:设底角为k°,则顶角为2k°,
∴有k°+k°+2k°=180°,
解得k°=45°,
∴顶角为90°.
故填90.
点评:本题考查了等腰三角形的性质,及三角形内角和定理;利用列方程求是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:

老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

11、请阅读下列材料:
已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;
(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,Rt△ABC中,∠ACB=90°,AC=BC,点D、E在斜边AB上,且∠DCE=45度.求证:线段DE、AD、EB总能构成一个直角三角形;
(2)已知:如图2,等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件精英家教网,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数;
(3)在(1)的条件下,如果AB=10,求BD•AE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

请阅读下列材料:
已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;
(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:

老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…

查看答案和解析>>

同步练习册答案