精英家教网 > 初中数学 > 题目详情

某商品的进价为每件30元,售价为每件50元,每个月可售出290件,如果每件商品的售价每上调一元,则每个月少卖10件(每件售价不能高于56元)设每件商品的售价上调x元(x为正整数)每个月的销售量为y件.
(1)写出y与x的函数关系式,并注明x的取值范围;
(2)设每月的销售利润为W元,每件商品的售价为多少元时W最大;请问,售价在什么范围时,每个月的售价不低于5880元.

解:(1)设每件商品的售价上涨x元(x为正整数),
则每件商品的利润为:(50-30+x)元,
总销量为:(290-10x)件,
故y=290-10x,
∵原售价为每件50元,每件售价不能高于56元,
∴0≤x≤6,
(2)
每月的销售利润为:
W=(50-30+x)(290-10x),
=(20+x)(290-10x),
=-10x2+90x+5800.
=-10(x2-9x)+5800,
=-10(x-4.5)2+6002.5.
∵x为正整数,
∴x=4时,W=6000,
x=5时,W=6000,
故每件商品的售价为54元或55元时W最大,为6000元,
当-10x2+90x+5800=5880,
-10x2+90x-80=0,
整理得:x2-9x+8=0,
解得:x1=1,x2=8,根据0≤x≤6,
故售价在51到56范围内时,每个月的售价不低于5880元.
分析:(1)根据题意,得出每件商品的利润以及商品总的销量,即可得出y与x的函数关系式.
(2)根据题意利用配方法得出二次函数的顶点形式,进而得出当x=5或4时得出y的最大值.
点评:此题主要考查了二次函数的应用以及二次函数的最值问题,根据每天的利润=一件的利润×销售量,建立函数关系式,借助二次函数解决实际问题是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)当售价的范围是多少时,使得每件商品的利润率不超过80%且每个月的利润不低于2250元?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商品的进价为每件40元,售价为每件60元时,每个月可卖出800件;如果每件商品的售价每上涨1元,则每个月少卖20件.设每件商品售价为x元,每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大销售利润?最大的月销售利润是多少元?
(3)物价部门规定每件商品的利润率不高于100%,商家为了使每个月的销售利润不低于10000元,如何定价,商品的月销售量最大?最大销售量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨价一元,每星期要少卖出10件.设该商品定价为每件x元.
(1)该商店每星期的销售量是
900-10x
900-10x
件(用含x的代数式表示);
(2)设商场每星期获得的利润为y元,求y与x的函数关系式;
(3)该商品应定价为多少元时,商场能获得最大利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•巴中)某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少买10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件.市场调查反映:如调整价格进行涨价销售,每涨价一元,每星期要少卖出10件.该商品应定价为多少元时,商场能获得最大利润?

查看答案和解析>>

同步练习册答案