(本题14分)如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的长;
(2)设CP=x, △PDQ的面积为y,求y关于x的函数表达式,并求自变量的取值范围;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.
、解:(1)∵A、D关于点Q成中心对称,HQ⊥AB,
∴=90°,HD=HA,
∴,…………………………………………………………………………2分
∴△DHQ∽△ABC.……………………………………………………………………1分
(2)①如图1,当时,
ED=,QH=,
此时. …………………………………………2分
②如图2,当时,
ED=,QH=,
此时. …………………………………………2分
∴y与x之间的函数解析式为(自变量取值写对给1分)
(3)①如图1,当时,
若DE=DH,∵DH=AH=, DE=,
∴=,.……………………………………………………1分
显然ED=EH,HD=HE不可能; ……………………………………………………1分
②如图2,当时,
若DE=DH,=,; …………………………………………1分
若HD=HE,此时点D,E分别与点B,A重合,; ………………………1分
若ED=EH,则△EDH∽△HDA,
∴,,. ……………………………………2分
∴当x的值为时,△HDE是等腰三角形.
(其他解法相应给分)
解析
科目:初中数学 来源: 题型:
(本题14分)如图,已知正比例函数和反比例函数的图象都经过点.
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使的面积与的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011届上海市黄浦区数学学业考试模拟试卷 题型:解答题
(本题14分)如图11,在△ABC中,∠ACB=,AC=BC=2,M是边AC的中点,
CH⊥BM于H.
(1)试求sin∠MCH的值;
(2)求证:∠ABM=∠CAH;
(3)若D是边AB上的点,且使△AHD为等腰三角形,请直接写出AD的长为________.
查看答案和解析>>
科目:初中数学 来源:2012-2013学年江苏省宿迁市)九年级第二次联考数学试卷(解析版) 题型:解答题
(本题14分)如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AE=8,⊙O的半径为5,求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com