精英家教网 > 初中数学 > 题目详情
15.因式分解:
(1)x2y-2xy+xy2
(2)2x2-8.

分析 (1)根据提公因式法,可得答案;
(2)根据提公因式法,可得平方差公式,根据平方差公式,可得答案.

解答 解:(1)原式=xy(x-2+y)'
(2)原式=2(x2-4)
=2(x+2)(x-2).

点评 本题考查了因式分解,利用提公因式得出公式法是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.如图,在离地面高度5米处引拉线固定电线杆,拉线和地面成50°角,则拉线AC的长为6.5米(精确到0.1米).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值:$\frac{x}{{x}^{2}-4}$$•\frac{x+2}{{x}^{2}-3x}$$+\frac{1}{x-2}$+1,其中整数x与2、3构成△ABC的三边.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,点A、B在数轴上,它们所对应的数分别是-2与$\frac{2x+2}{3x-5}$,且点A、B到原点的距离相等,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.当y≠0时,$\frac{b}{2x}$=$\frac{by}{2xy}$,这种变形的依据是分式的基本性质.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB于点D,交AC于点E.
(1)若BC=3,AC=4,求CD的长;
(2)求证:∠1=∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1).如图1,小明和小亮在研究一个数学问题:已知AB∥CD,AB和CD都不经过点P,探索∠P与∠A,∠C的数量关系.

小明是这样证明的:过点P作PQ∥AB
∴∠APQ=∠A(两直线平行,内错角相等,)
∵PQ∥AB,AB∥CD.
∴PQ∥CD(平行于同一条直线的两条直线互相平行)             
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是这样证明的:过点作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是小明.
(2)应用:
在图2中,若∠A=120°,∠C=140°,则∠APC的度数为100°;
(3)拓展:
在图3中,探索∠APC与∠A,∠C的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.阅读下列材料,并解答下列问题,如图1,AB∥CD,EO和FO交于O,过点O作AB的平行线,我们可以得出∠2与∠1,∠3之间的数量关系是∠2=∠1+∠3.
(1)如图2,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交于点E,若∠1=30°,则∠B=120°.
(2)如图3,AB∥CD,则∠1,∠2,∠3,∠4之间的数量关系是什么?并说明理由.
(3)如图4,AB∥CD,图中∠1,∠2,∠3,…,∠2n-1,∠2n之间有什么关系?(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在图中求作⊙P,使得⊙P经过点M与点N,且圆心P到∠AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑).

查看答案和解析>>

同步练习册答案