精英家教网 > 初中数学 > 题目详情
已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.
分析:求出△BEC≌△ADC,推出∠CBE=∠DAC,根据∠CBE+∠CEB=90°推出∠DAC+∠AEF=90°,求出∠AFE=90°,根据垂直定义求出即可.
解答:证明:∵∠ACB=90°,
∴∠ACD=∠ACB=90°,
在△BEC和△ADC中
BC=AC
∠BCE=∠ACD
CE=CD

∴△BEC≌△ADC(SAS),
∴∠CBE=∠DAC,
∵∠ACB=90°,
∴∠CBE+∠CEB=90°,
∵∠CEB=∠AEF,
∴∠DAC+∠AEF=90°,
∴∠AFE=180°-90°=90°,
∴BF⊥AD.
点评:本题考查了全等三角形的性质和判定,垂直定义,三角形的内角和定理等知识点,关键是求出∠CBE=∠DAC,主要考查学生运用定理进行推理的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是(  )
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延长线于E,BA、CE延长线相交于F点.
求证:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,两直角边AC、BC的长是关于x的方程x2-(m+5)x+6m=0的两个实数根.求m的值及AC、BC的长(BC>AC).

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知Rt△ABC中,∠C=90°∠A=36°,以C为圆心,CB为半径的圆交AB于P,则弧BP的度数是
72
°.

查看答案和解析>>

同步练习册答案