若实数abc满足a2+b2+c2=9,代数式(a-b)2+(b-c)2+(c-a)2的最大值是( )
A.27
B.18
C.15
D.12
【答案】分析:根据不等式的基本性质判断.
解答:解:∵a2+b2+c2=(a+b+c)2-2ab-2ac-2bc,
∴-2ab-2ac-2bc=a2+b2+c2-(a+b+c)2①
∵(a-b)2+(b-c)2+(c-a)2=2a2+2b2+2c2-2ab-2ac-2bc;
又(a-b)2+(b-c)2+(c-a)2
=3a2+3b2+3c2-(a+b+c)2
=3(a2+b2+c2)-(a+b+c)2②
①代入②,得=3×9-(a+b+c)2=27-(a+b+c)2,
∵(a+b+c)2≥0,
∴其值最小为0,
故原式最大值为27.
故选A.
点评:本题主要考查了不等式a2+b2≥2ab.