精英家教网 > 初中数学 > 题目详情

如图,菱形ABCD中,AC=8,BD=6,将△ABD沿AC方向向右平移到△A′B′D′的位置,若平移距离为2,则阴影部分的面积为________

7.5
分析:首先设A′D′交CD于点E,交BD于点M,BD交A′C于点N,过点E作EF⊥A′C于点F,由平移的性质与菱形的性质,易求得A′G,A′N,A′F与D′G的长,易得BD∥EF∥B′D′,即可求得△A′MN∽△A′D′G,△A′EF∽△A′D′G,然后由相似三角形的对应边成比例,即可求得MN与EF的长,继而求得梯形MNFE的面积,则可求得答案.
解答:解:根据题意得:NG=2,
设A′D′交CD于点E,交BD于点M,BD交A′C于点N,过点E作EF⊥A′C于点F,
由平移的性质可得:NF=GF=NG=1,
∵菱形ABCD中,AC=8,BD=6,
∴A′G=AC=4,D′G=BD=3,B′D′⊥A′C,BD⊥A′C,
∴A′N-A′G=NG=4-2=2,A′F=A′G-GF=4-1=3,BD∥EF∥B′D′,
∴△A′MN∽△A′D′G,△A′EF∽△A′D′G,


∴MN=,EF=
∴S梯形MNFE=×(MN+EF)×HF=×(+)×1=
∴S阴影=4S梯形MNFE=4×=7.5.
故答案为:7.5.
点评:此题考查了相似三角形的判定与性质、菱形的性质以及平移的性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD中,∠A=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿B→C→D向终点D运动.同时动点Q从点A出发,以相同的速度沿A→D→B向终点B运动,运动的时间为x秒,当点P到达点D时,点P、Q同时停止运动,设△APQ的面积为y,则反映y与x的函数关系的图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长为2
3
,则PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:菱形ABCD中,E是AB的中点,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度数;
(2)对角线BD的长;
(3)菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的长.
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案