精英家教网 > 初中数学 > 题目详情

已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.

证明:延长GP至F,使PF=PG,连接AD,BF,CF,
∵G是△ABC的重心,
∴AG=2GP,BP=PC,
∵PF=PG,
∴四边形GBFC是平行四边形,
∴GF=2GP,
∴AG=GF,
∵BG∥CF,
∴∠1=∠2
∵过A、G的圆与BG切于G,
∴∠3=∠D,
又∠2=∠3,
∴∠1=∠2=∠3=∠D,
∴A、D、F、C四点共圆,
∴GA、GF=GC•GD,
即GA2=GC•GD.
分析:构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.
点评:本题综合考查了圆中重要定理,结合图形,熟记并灵活应用定理是正确解题的基础,而通过倍长中线,构造平行四边形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

    已知直线与x轴、y轴分别交干A、B两点.  ∠ABC=60°.BC与x轴交于点C.

(1)试确定直线BC的解析式.

(2)若动点P从A点山发沿AC向点C运动(不与A、C重舍).同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒l个单位长度. 动点Q的运动速度是每杪2个单位长度.设△APQ的面积为S.P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.

(3)在(2)的条件下.当△APQ的面积最大时.y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标:

    若不存在.请说明理由.

查看答案和解析>>

同步练习册答案