精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,E是正方形内一点,F是正方形外一点,且∠EDC=∠FBC,EC⊥CF.
(1)求证:EC=FC;
(2)当BE:CE=1:2,∠BEC=135°时,求tan∠FBE的值.

(1)证明:在正方形ABCD中,CD=CB,∠DCE+∠BCE=∠BCD=90°,
∵EC⊥CF,
∴∠BCF+∠BCE=90°,
∴∠BCF=∠DCE,
在△BCF和△DCE中,

∴△BCF≌△DCE(ASA),
∴EC=FC;

(2)解:如图,连接EF,∵EC⊥CF,EC=FC,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠BEC=135°,
∴∠BEF=∠BEC-∠CEF=135°-45°=90°,
∵BE:CE=1:2,
∴设BE=k,CE=2k,
则EF=CE=2k,
在Rt△BEF中,tan∠FBE===2
分析:(1)根据正方形的四条边都相等可得CD=CB,根据同角的余角相等可得∠BCF=∠DCE,然后利用“角边角”证明△BCF和△DCE全等,根据全等三角形对应边相等可得EC=FC;
(2)连接EF,先判定△ECF是等腰直角三角形,求出∠CEF=45°,然后求出∠BEF=90°,根据比例设BE=k,CE=2k,根据等腰直角三角形斜边等于直角边的倍求出EF,然后根据正切的定义解答即可.
点评:本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,锐角三角函数的定义,(2)作辅助线构造出直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案