【题目】(2016湖北省荆州市第24题)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.
(1)求k的取值范围;
(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;
(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.
【答案】(1)、k≥﹣1且k≠1且k≠2;(2)、x=0、1、2、3;(3)、不成立;理由见解析.
【解析】
试题分析:(1)、先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)、先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可;(3)、根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.
试题解析:(1)、∵关于x的分式方程的根为非负数, ∴x≥0且x≠1,
又∵x=≥0,且≠1, ∴解得k≥﹣1且k≠1,
又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0, ∴k≠2,
综上可得:k≥﹣1且k≠1且k≠2;
(2)、∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,
∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,
∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0, ∴△=9m2﹣4m(m﹣1)=m(5m+4),
∵x1、x2是整数,k、m都是整数, ∵x1+x2=3,x1x2==1﹣, ∴1﹣为整数,
∴m=1或﹣1, ∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0, x2﹣3x=0,
x(x﹣3)=0, x1=0,x2=3;
把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0, x2﹣3x+2=0, (x﹣1)(x﹣2)=0, x1=1,x2=2;
(3)|m|≤2不成立,理由是:
由(1)知:k≥﹣1且k≠1且k≠2, ∵k是负整数, ∴k=﹣1,
(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,
∴x1+x2=﹣==﹣m,x1x2==,
x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k), x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,
x12+x22═x1x2+k2, (x1+x2)2﹣2x1x2﹣x1x2=k2, (x1+x2)2﹣3x1x2=k2,
(﹣m)2﹣3×=(﹣1)2, m2﹣4=1, m2=5, m=±, ∴|m|≤2不成立.
科目:初中数学 来源: 题型:
【题目】
如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数的图象与BC边交于点E.
⑴当F为AB的中点时,求该函数的解析式;
⑵当k为何值时,△EFA的面积最大,最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件是必然事件的是( )
A. 明天太阳从西边升起
B. 掷出一枚硬币,正面朝上
C. 打开电视机,正在播放2018俄罗斯世界杯足球赛
D. 任意画一个三角形,它的内角和为180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列条件中,不能确定两个三角形全等的条件是( )
A.三条边对应相等
B.两角和其中一角的对边对应相等
C.两角和它们的夹边对应相等
D.两边和一角对应相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为_________.(π取3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD,AB=9,AD=4. E为CD边上一点,CE=6.
(1)求AE的长.
(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE. 设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com