精英家教网 > 初中数学 > 题目详情

如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF的平分线,试探索∠BDC与∠A之间的数量关系.

解:∠BDC=90°-∠A.
理由:∵BD、CD分别是∠CBE、∠BCF的平分线
∴∠DBC=∠EBC,∠BCD=∠BCF,
∵∠CBE、∠BCF是△ABC的两个外角
∴∠CBE+∠BCF=360°-(180°-∠A)=180°+∠A
∴∠DBC+∠BCD=(∠EBC+∠BCF)=(180°+∠A)=90°+∠A,
在△DBC中∠BDC=180°-(∠DBC+∠BCD)=180°-(90°+∠A)=90°-∠A.
分析:先根据BD、CD分别是∠CBE、∠BCF的平分线可知∠DBC=∠EBC,∠BCD=∠BCF,再由∠CBE、∠BCF是△ABC的两个外角得出∠CBE+∠BCF=360°-(180°-∠A)=180°+∠A,故∠DBC+∠BCD=(∠EBC+∠BCF)=(180°+∠A)=90°+∠A,根据在△DBC中∠BDC=180°-(∠DBC+∠BCD)即可得出结论.
点评:本题考查的是三角形内角和定理及三角形外角的性质,熟知三角形的内角和等于180°是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、(1)如图,BD与CD分别平分∠ABC和∠ACB,已知∠BDC=130°,求∠A的度数.
(2)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,求∠1的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD,CD分别平分∠ABC和∠ACB,DE平行于BC交AC于点F,交AB于点E,若BC=4,BE=1.5,CF=1,则EF=
2.5
2.5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD、CD分别平分∠ABC和∠ACE,∠A=60°,则∠D的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(每小题6分,共12分)

(1)如图,BD与CD分别平分∠ABC和∠ACB,已知∠BDC=,求∠A的度数。

(2)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,求∠1的度数.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(每小题6分,共12分)
(1)如图,BD与CD分别平分∠ABC和∠ACB,已知∠BDC=,求∠A的度数。

(2)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,求∠1的度数.

查看答案和解析>>

同步练习册答案