精英家教网 > 初中数学 > 题目详情

已知:如图,在梯形ABCD中,AD∥BC,BC=3AD.
(1)如图①,连接AC,如果三角形ADC的面积为6,求梯形ABCD的面积;
(2)如图②,E是腰AB上一点,连接CE,设△BCE和四边形AECD的面积分别为S1和S2,且2S1=3S2,求数学公式的值;
(3)如图③,AB=CD,如果CE⊥AB于点E,且BE=3AE,求∠B的度数.

解:(1)在梯形ABCD中,
∵AD∥BC,又△ADC与△ABC等高,且BC=3AD,
∴S△ABC=3S△ADC
∵S△ADC=6,
∴S梯形ABCD=S△ABC+S△ACD=4S△ADC=24.

(2)方法1:连接AC,如图①,设△AEC的面积为S3,则△ACD的面积为S2-S3

由(1)和已知可得
解得:S1=4S3

∵△AEC与△BEC等高,

方法2:延长BA、CD相交于点F,如图②
∵AD∥BC,
∴△FAD∽△FBC,

设S△FAD=S3=a,则S△FAD=9a,S1+S2=8a,
又∵2S1=3S2
a,a,S3=a.
∵△EFC与△CEB等高,

设FE=7k,则BE=8k,FB=15k,
∴FA=FB=5k.
∴AE=7k-5k=2k.


(3)延长BA、CD相交于点M.如图③,
∵AD∥BC,
∴△MAD∽△MBC,

∴MB=3MA.设MA=2x,则MB=6x.
∴AB=4x.
∵BE=3AE,
∴BE=3x,AE=x.
∴BE=EM=3x,E为MB的中点.
又∵CE⊥AB,
∴CB=MC.
又∵MB=MC,
∴△MBC为等边三角形.
∴∠B=60°.
分析:(1)由△ADC与△ABC等高,且BC=3AD,可得△ABC的面积是△ADC面积的三倍,所以可求得△ADC的面积,即可求得梯形ABCD的面积;
(2)可利用面积法求解,因为如果三角形的高相等,则其面积的比等于其底的比,所以可求得AE与BE的比;
(3)首先延长BA与CD,然后根据面积的关系求得△MBC是等边三角形,即可得∠B为60°.
点评:此题考查了如果三角形的高相等,则面积比等于其底边的比.解此题的关键是准确的作出辅助线与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,求AC的长及梯形面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AB∥CD,AC⊥BC,AC平分∠DAB,点E为AC的中点.求证:DE=
12
BC

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.
(1)求证:四边形ABGD是平行四边形;
(2)如果AD=
2
AB
,求证:四边形DGEC是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.
    求:(1)AB的长;
        (2)梯形ABCD的面积.

查看答案和解析>>

同步练习册答案