精英家教网 > 初中数学 > 题目详情
(1)如图①②,试研究其中∠1、∠2与∠3、∠4之间的数量关系;
(2)如果我们把∠1、∠2称为四边形的外角,那么请你用文字描述上述的关系式;
(3)用你发现的结论解决下列问题:
如图③,AE、DE分别是四边形ABCD的外角∠NAD、∠MDA的平分线,∠B+∠C=240°,求∠E的度数.
分析:(1)根据四边形的内角和等于360°用∠5+∠6表示出∠3+∠4,再根据平角的定义用∠5+∠6表示出∠1+∠2,即可得解;
(2)从外角的定义考虑解答;
(3)根据(1)的结论求出∠MDA+∠NAD,再根据角平分线的定义求出∠ADE+∠DAE,然后利用三角形的内角和定理列式进行计算即可得解.
解答:(1)解:∵∠3、∠4、∠5、∠6是四边形的四个内角,
∴∠3+∠4+∠5+∠6=360°,
∴∠3+∠4=360°-(∠5+∠6),
∵∠1+∠5=180°,∠2+∠6=180°,
∴∠1+∠2=360°-(∠5+∠6),
∴∠1+∠2=∠3+∠4;

(2)答:四边形的任意两个外角的和等于与它们不相邻的两个内角的和;

(3)解:∵∠B+∠C=240°,
∴∠MDA+∠NAD=240°,
∵AE、DE分别是∠NAD、∠MDA的平分线,
∴∠ADE=
1
2
∠MDA,∠DAE=
1
2
∠NAD,
∴∠ADE+∠DAE=
1
2
(∠MDA+∠NAD)=
1
2
×240°=120°,
∴∠E=180°-(∠ADE+∠DAE)=180°-120°=60°.
点评:本题考查了多边形的内角和公式,平角的定义,角平分线的定义,整体思想的利用是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•井研县模拟)如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=
35
,AD=12.
(1)求证:△ANM≌△ENM;
(2)试探究:直线FB与⊙O相切吗?请说明理由.
(3)探究四边形AMEN的形状,并求该四边形的面积S.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省无锡市南长区塘南中学初三数学一模试卷(解析版) 题型:解答题

(2009•井研县一模)如图,已知:A(m,2)是一次函数y=kx+b与反比例函数y=的交点
(1)求m的值;
(2)若该一次函数分别与x轴y轴交于E、F两点,且直角△EOF的外心为点A.试求它的解析式;
(3)在的图象上另取一点B,作BK⊥x轴于K,将(2)中的一次函数图象绕点A旋转后所得的直线记为l,若l与y轴的正半轴交于点C,且4CO=FO.试问:在y轴上是否存在点P,使得两个三角形的面积S△PCA=S△BOK?若存在,求点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年四川省乐山市井研县马踏学区三校联合一模试卷(解析版) 题型:解答题

(2009•井研县一模)如图,已知:A(m,2)是一次函数y=kx+b与反比例函数y=的交点
(1)求m的值;
(2)若该一次函数分别与x轴y轴交于E、F两点,且直角△EOF的外心为点A.试求它的解析式;
(3)在的图象上另取一点B,作BK⊥x轴于K,将(2)中的一次函数图象绕点A旋转后所得的直线记为l,若l与y轴的正半轴交于点C,且4CO=FO.试问:在y轴上是否存在点P,使得两个三角形的面积S△PCA=S△BOK?若存在,求点P的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案