精英家教网 > 初中数学 > 题目详情
已知二次函数

(1)证明:不论取何值,该函数图象与轴总有两个公共点;
(2)若该函数的图象与轴交于点(0,5),求出顶点坐标,并画出该函数图象.
(1)证明见解析;(2)顶点坐标:(,),图像见解析.

试题分析:(1)证明对应的一元二次方程﹣x2+(m﹣3)x+m=0的根的判别式大于0,即可作出判断;
(2)把x=0,y=5代入抛物线的解析式,即可得到一个关于m的方程,从而求得m的值,得到函数的解析式,然后把解析式化成顶点式的形式,即可求解.
试题解析:(1)令,
,,
==,
∵(m-1)2≥0
∴(m-1)2+8>0
∴b2-4ac>0
∴不论取何值,该函数图象与轴总有两个公共点;
(2)把,代入 
 
= 
顶点坐标:(,).
函数图象:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线的解析式为
(1)求证:不论m为何值,此抛物线与x轴必有两个交点,且两交点A、B之间的距离为定值;
(2)设点P为此抛物线上一点,若△PAB的面积为8,求符合条件的点P的坐标;
(3)若(2)中△PAB的面积为S(S>0),试根据面积S值的变化情况,确定符合条件的点P的个数(本小题直接写出结论,不要求写出计算、证明过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=a(x-m)2-2a(x-m)(a,m为常数,且a≠0).
(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;
(2)设该函数的图象的顶点为C,与x轴交于A,B两点,当△ABC是等腰直角三角形时,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,Rt△OBC的两条直角边分别落在x轴、y轴上,且OB=1,OC=3,将△OBC绕原点O顺时针旋转90°得到△OAE,将△OBC沿y轴翻折得到△ODC,AE与CD交于点F.

(1)若抛物线过点A、B、C, 求此抛物线的解析式;
(2)求△OAE与△ODC重叠的部分四边形ODFE的面积;
(3)点M是第三象限内抛物线上的一动点,点M在何处时△AMC的面积最大?最大面积是多少?求出此时点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一条抛物线经过原点和点C(8,0),A、B是该抛物线上的两点,AB∥x轴,OA=5,AB=2.点E在线段OC上,作∠MEN=∠AOC,使∠MEN的一边始终经过点A,另一边交线段BC于点F,连接AF.

(1)求抛物线的解析式;
(2)当点F是BC的中点时,求点E的坐标;
(3)当△AEF是等腰三角形时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线经过两点,则的大小关系是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=x2+bx+c的图象经过点(4,3),(3,0).
(1)b=        ,c=         
(2)选取适当的数据填写下表,并在右图的直角坐标系中画出该函数的图像;
x

 
 
 
 
 

y

 
 
 
 
 

 
(3)若将此图象沿x轴向左平移3个单位,直接写出平移后图象所对应的函数关系式           .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

A,B,C是抛物线上三点,的大小关系为(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是(   )
A.a>0B.当x>1时,y随x的增大而增大
C.c<0D.3是方程ax2+bx+c=0的一个根

查看答案和解析>>

同步练习册答案