定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.
(1)请你直接写出“蛋圆”抛物线部分的解析式 ,自变量的取值范围是 ;
(2)请你求出过点C的“蛋圆”切线与x轴的交点坐标;
(3)求经过点D的“蛋圆”切线的解析式.
(1) ,;(2)(-8.,0);(3).
解析试题分析:(1)由条件知A(-2,0)B(4,0)D(0,8),设y=a(x+2)(x-4),把D点坐标代入即可求出a的值,从而函数解析式可求;
(2)连接,设过点C的“蛋圆”切线与x轴的交点为.求出OE长即可.
(3)(3)设过点,“蛋圆”切线的解析式为.
由题意得,方程组只有一组解,即有两个相等实根,
解得:
∴过点“蛋圆”切线的解析式为.
试题解析:(1)“蛋圆”抛物线部分的解析式为自变量的取值范围是;
(2)如图,连接,设过点C的“蛋圆”切线与x轴的交点为.
∴.
∵,
在中,∵,,
∴,
∵∽,
∴,∴.
∴点的坐标为(-8.,0).
(3)设过点,“蛋圆”切线的解析式为.
由题意得,方程组只有一组解,即有两个相等实根,
∴
∴过点“蛋圆”切线的解析式为.
考点: 二次函数综合题.
科目:初中数学 来源: 题型:解答题
小明利用暑假20天(8月5日至24日)参与了一家网店经营的社会实践.负责在网络上销售一种新款的SD卡,每张成本价为20元.第天销售的相关信息如下表所示.
销售量p(张) | |
销售单价q(元/张) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知二次函数.
(1)证明:不论取何值,该函数图象与轴总有两个公共点;
(2)若该函数的图象与轴交于点(0,5),求出顶点坐标,并画出该函数图象.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,
(1)求出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x的增大而减小?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线与x轴交于A、C两点,与y轴交于B点.
(1)求△AOB的外接圆的面积;
(2)若动点P从点A出发,以每秒1个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒0.5个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
问:是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.
(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(1)已知二次函数,请你化成的形式,并在直角坐标系中画出的图象;
(2)如果,是(1)中图象上的两点,且,请直接写出、的大小关系;
(3)利用(1)中的图象表示出方程的根来,要求保留画图痕迹,说明结果.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com