精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD.

(1)求该抛物线的解析式;
(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,若经过点P的直线PE与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由.
解:(1)由题意得:OC=4,OD=2,∴DM=OC+OD=6。
∴顶点M坐标为(2,6)。
设抛物线解析式为:y=a(x﹣2)2+6,
∵点C(0,4)在抛物线上,∴4=4a+6,解得a=
∴抛物线的解析式为:y=(x﹣2)2+6=x2+2x+4。
(2)如答图1,过点P作PE⊥x轴于点E.

∵P(x,y),且点P在第一象限,∴PE=y,OE=x。
∴DE=OE﹣OD=x﹣2.
∴S=S梯形PEOC﹣SCOD﹣SPDE=(4+y)•x﹣×2×4﹣(x﹣2)•y=y+2x﹣4。
将y=x2+2x+4代入上式得:S=x2+2x+4+2x﹣4=x2+4x。
在抛物线解析式y=x2+2x+4中,令y=0,即x2+2x+4=0,解得x=2±
设抛物线与x轴交于点A、B,则B(2+,0)。
∴0<x<2+
∴S关于x的函数关系式为:S=x2+4x(0<x<2+)。
(3)存在。若以O、P、E为顶点的三角形与△OPD全等,可能有以下情形:
①OD=OP。
由图象可知,OP最小值为4,即OP≠OD,故此种情形不存在。
②OD=OE。
若点E在y轴正半轴上,如答图2所示,此时△OPD≌△OPE。

∴∠OPD=∠OPE,即点P在第一象限的角平分线上。
∴直线PE的解析式为:y=x。
若点E在y轴负半轴上,易知此种情形下,两个三角形不可能全等,故不存在。
③OD=PE。
∵OD=2,∴第一象限内对称轴右侧的点到y轴的距离均大于2。
∴点P只能位于对称轴左侧或与顶点M重合。
若点P位于第一象限内抛物线对称轴的左侧,易知△OPE为钝角三角形,而△OPD为锐角三角形,则不可能全等。
若点P与点M重合,如答图3所示,此时△OPD≌OPE,四边形PDOE为矩形。

∴直线PE的解析式为:y=6。
综上所述,存在以O、P、E为顶点的三角形与△OPD全等,直线PE的解析式为y=x或y=6。

试题分析:(1)首先求出点M的坐标,然后利用顶点式和待定系数法求出抛物线的解析式。
(2)如答图1所示,作辅助线构造梯形,利用S=S梯形PEOC﹣SCOD﹣SPDE求出S关于x的表达式;求出抛物线与x轴正半轴的交点坐标,得到自变量的取值范围。
(3)由于三角形的各边,只有OD=2是确定长度的,因此可以以OD为基准进行分类讨论:
①OD=OP,因为第一象限内点P到原点的距离均大于4,因此OP≠OD,此种情形排除。
②OD=OE.分析可知,只有如答图2所示的情形成立。
③OD=PE.分析可知,只有如答图3所示的情形成立。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.

(1)写出这个二次函数的对称轴;
(2)设这个二次函数的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AD、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式。
[提示:如果一个二次函数的图象与x轴的交点为A,那么它的表达式可表示为:]

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.

(1)求抛物线的解析式;
(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;
(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P在抛物线上,当SPAB≤6时,求点P的横坐标x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣4,0),B(﹣1,3),C(﹣3,3)

(1)求此二次函数的解析式;
(2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线l的对称点为M,点M关于y轴的对称点为N,若四边形OAPN的面积为20,求m、n的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1所示,已知直线与x轴、y轴分别交于A、C两点,抛物线经过A、C两点,点B是抛物线与x轴的另一个交点,当时,y取最大值.

(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且,求点P的坐标;
(3)若直线与(1)中所求的抛物线交于M、N两点,问:
①是否存在a的值,使得∠MON=900?若存在,求出a的值;若不存在,请说明理由;
②猜想当∠MON>900时,a的取值范围(不写过程,直接写结论).
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.

(1)当m=3时,点B的坐标为       ,点E的坐标为         
(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.
(3)如图,若点E的纵坐标为-1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在反比例函数中,当x>0时,y随x的增大而增大,则二次函数y=m x2+m x的图象大致是下图中的
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

有下列4个命题:
①方程的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,则CD=3.
③点P(x,y)的坐标x,y满足x2+y2+2x﹣2y+2=0,若点P也在的图象上,则k=﹣1.
④若实数b、c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1.
上述4个命题中,真命题的序号是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=x2﹣4x+5的最小值是
A.﹣1B.1C.3D.5

查看答案和解析>>

同步练习册答案