分析 (1)由平行四边形的性质可得AB=CD,∠ABE=∠CDF,再因为MA⊥AN,NC⊥BC可得∠BAM=∠DCN,利用ASA定理可证得结论;
(2)利用菱形的性质可得AC⊥EF,由全等三角形的性质可得AE=CF,由平行四边形的判定定理可得四边形AECF为平行四边形,利用菱形的判定定理得出结论.
解答 (1)证明:∵四边形ABCD为平行四边形,
∴AB=CD,AB∥CD,
∴∠ABE=∠CDF,∠BAD=∠BCD,
∵MA⊥AN,NC⊥BC,
∴∠BAM=∠DCN,
在△ABE和△CDF中,
$\left\{\begin{array}{l}{∠ABE=∠CDF}\\{AB=CD}\\{∠BAM=∠DCN}\end{array}\right.$,
∴△ABE≌△CDF(ASA);
(2)解:四边形ABCD是菱形时,四边形AECF是菱形.
∵△ABE≌△CDF,
∴AE=CF,
∵MA⊥AN,NC⊥BC,
∴AM∥CN,
∴四边形AECF为平行四边形,
∵四边形ABCD是菱形,
∴AC⊥EF,
∴四边形AECF为菱形.
点评 本题主要考查了平行四边形的性质和菱形的性质及判定定理,综合运用各定理是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 2$\sqrt{3}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
| 平均每个红包的钱数(元) | 2 | 5 | 10 | 20 | 50 |
| 人数 | 7 | 4 | 2 | 1 | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com