精英家教网 > 初中数学 > 题目详情

如图,在边为的1正方形组成的网格中,建立平面直角坐标系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),将△ABC沿着x轴翻折后,得到△DEF,点B的对称点是点E,求过点E的反比例函数解析式,并写出第三象限内该反比例函数图象所经过的所有格点的坐标.


解:∵点B关于x轴的对称点是点E,B(﹣2,3),

∴点E坐标为(﹣2,﹣3),

设过点E的反比例函数解析式为y=,

∴k=6,

∴过点E的反比例函数解析式为y=,

∴第三象限内该反比例函数图象所经过的所有格点的坐标为(﹣1,﹣6),(﹣2,﹣3),(﹣3,﹣2),(﹣6,﹣1).


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是(  )

 

A.

7

B.

8

C.

9

D.

10

查看答案和解析>>

科目:初中数学 来源: 题型:


小亮解出方程组的解为由于不小心滴上了两滴墨水,刚好遮

住了两个数●和★,请你帮他找回●和★这个数,则●=     ,★=    

查看答案和解析>>

科目:初中数学 来源: 题型:


某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是(  )

捐款(元)

10

15

20

50

人数

1

5

4

2

 

A.

15,15

B.

17.5,15

C.

20,20

D.

15,20

查看答案和解析>>

科目:初中数学 来源: 题型:


方程组的解为  

查看答案和解析>>

科目:初中数学 来源: 题型:


已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q两点,顶点为N(0,6),且与x轴交于A、B两点.

(1)求点P的坐标;

(2)求抛物线解析式;

(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:


下列运算正确的是(  )

 

A.

﹣2(a﹣1)=﹣2a﹣1

B.

(﹣2a)2=﹣2a2

C.

(2a+b)2=4a2+b2

D.

3x2﹣2x2=x2

查看答案和解析>>

科目:初中数学 来源: 题型:


某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:

(1)求y与x之间的函数关系式,并写出自变量x的取值范围;

(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?

(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:


从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=﹣x2+x+2上的概率为 

查看答案和解析>>

同步练习册答案