精英家教网 > 初中数学 > 题目详情

在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE交AB于点M.若N是CD的中点,且MN=5,BE=2.求BC的长.

解::∵AD∥BC,
∴∠A=∠MBE,∠ADM=∠E,
在△AMD和△BME中,

∴△AMD≌△BME(ASA);
∴MD=ME,ND=NC,
∴MN=EC,
∴EC=2MN=2×5=10,
∴BC=EC-EB=10-2=8.
∴BC的长是8.
分析:找出全等的条件:BE=AD,∠A=∠ABE,∠E=∠ADE,即可证得△AMD≌△BME,然后证得MN是三角形的中位线,根据MN=(BE+BC),又BE=2,即可求得.
点评:本题考查了全等三角形的判断及三角形中位线定理的应用,熟记其性质、定理是证明、解答的基础.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,则∠ADC=
140°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AB∥CD,E是AB边上的点,给出下面三个论断:①AD=BC;②DE=CE;③AE=BE.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断作为结论,填入“求证”栏中,使之成为一个正确的命题,并证明之.
已知:如图,在梯形ABCD中,AB∥CD,E是AB边上的点,
AD=BC,AE=BE
AD=BC,AE=BE

求证:
DE=CE
DE=CE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.
(1)试说明∠ABD=∠CBD.
(2)若∠C=2∠E,试说明AB=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,则∠BDC的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,点P是下底BC边上的一个动点,从B向C以2cm/s的速度运动,到达点C时停止运动,设运动的时间为t(s).
(1)求BC的长;
(2)当t为何值时,四边形APCD是等腰梯形;
(3)当t为何值时,以A、B、P为顶点的三角形是等腰三角形.

查看答案和解析>>

同步练习册答案