精英家教网 > 初中数学 > 题目详情

在形如ab=N的式子中,我们已经研究过两种情况:
①已知a和b,求N,这是乘方运算;
②已知b和N,求a,这是开方运算;
现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算.
定义:如果ab=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记着b=logaN.
例如:因为23=8,所以log28=3;因为数学公式,所以数学公式
(1)根据定义计算:
①log381=______;②log33=______;③log31=______;
④如果logx16=4,那么x=______.
(2)设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数),
∵ax•ay=ax+y,∴ax+y=M•N∴logaMN=x+y,
即logaMN=logaM+logaN
这是对数运算的重要性质之一,进一步,我们还可以得出:
logaM1M2M3…Mn=______(其中M1、M2、M3、…、Mn均为正数,a>0,a≠1)
loga数学公式=______(a>0,a≠1,M、N均为正数).

解:根据题中给出的已知条件可得:(1)①4,②1;③0;④2(每空1分,共4分)
(2)logaM1+logaM2+logaM3+logaMn
logaM-logaN(每空2分,共4分)
故答案为:(1)①4,②1;③0;④2;(2)logaM1+logaM2+logaM3+logaMn,logaM-logaN
分析:(1)根据题中给出的对数的运算的定义和法则计算即可;
(2)根据题中给出的对数运算法则总结即可得出下面两个式子的答案.
点评:本题立意比较新颖,根据题中条件计算并且推算出对数运算的法则,考查了学生的举一反三的能力和对新知识的掌握,属于基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面材料,并解答下列各题:
在形如ab=N的式子中,我们已经研究过两种情况:
①已知a和b,求N,这是乘方运算;
②已知b和N,求a,这是开方运算;
现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算.
定义:如果ab=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记着b=logaN.
例如:因为23=8,所以log28=3;因为2-3=
1
8
,所以log2
1
8
=-3

(1)根据定义计算:
①log381=
 
;②log33=
 
;③log31=
 

④如果logx16=4,那么x=
 

(2)设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数),
∵ax•ay=ax+y,∴ax+y=M•N∴logaMN=x+y,
即logaMN=logaM+logaN
这是对数运算的重要性质之一,进一步,我们还可以得出:
logaM1M2M3…Mn=
 
(其中M1、M2、M3、…、Mn均为正数,a>0,a≠1)
loga
M
N
=
 
(a>0,a≠1,M、N均为正数).

查看答案和解析>>

科目:初中数学 来源: 题型:

在形如ab=N的式子中,我们已经研究过两种情况:
①已知a和b,求N,这是乘方运算;
②已知b和N,求a,这是开方运算;
现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算.
定义:如果ab=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作b=logaN.
例如:求log28,因为23=8,所以log28=3;又比如∵2-3=
1
8
,∴log2
1
8
=-3

(1)根据定义计算:
①log381=
 
;②log101=
 
;③如果logx16=4,那么x=
 

(2)设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数),
∵ax•ay=ax+y,∴ax+y=M•N∴logaMN=x+y,即logaMN=logaM+logaN
这是对数运算的重要性质之一,进一步,我们还可以得出:logaM1M2M3…Mn=
 

(其中M1、M2、M3、…、Mn均为正数,a>0,a≠1).
(3)请你猜想:loga
M
N
=
 
(a>0,a≠1,M、N均为正数).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面材料,并解答下列问题:
在形如ab=N的式子中,我们已经研究过两种情况:
①已知a和b,求N,这是乘方运算;
②已知b和N,求a,这是开方运算.
现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫作对数运算.
定义:如果ab=N(a>0.a≠1,N>0),则b叫作以a为底的N的对数,记作b=logaN.
例如:因为23=8,所以log28=3;因为2-3=
1
8
,所以log2
1
8
=-3

(1)根据定义计算:
①log381=
4
4
;   ②log33=
1
1

③log31=
0
0
;    ④如果logx16=4,那么x=
±2
±2

(2)设ax=M,ay=N,则logaN=y(a>0,a≠1,M、N均为正数).用logaM,logaN的代数式分别表示logaMN及loga
M
N
,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省盐城市亭湖区中考数学一模试卷(解析版) 题型:解答题

在形如ab=N的式子中,我们已经研究过两种情况:
①已知a和b,求N,这是乘方运算;
②已知b和N,求a,这是开方运算;
现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算.
定义:如果ab=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作b=logaN.
例如:求log28,因为23=8,所以log28=3;又比如∵,∴
(1)根据定义计算:
①log381=______;②log101=______;③如果logx16=4,那么x=______.
(2)设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数),
∵ax•ay=ax+y,∴ax+y=M•N∴logaMN=x+y,即logaMN=logaM+logaN
这是对数运算的重要性质之一,进一步,我们还可以得出:logaM1M2M3…Mn=______.
(其中M1、M2、M3、…、Mn均为正数,a>0,a≠1).
(3)请你猜想:=______(a>0,a≠1,M、N均为正数).

查看答案和解析>>

科目:初中数学 来源:2004年广东省深圳市实验中学高一直升考试数学试卷 (解析版) 题型:解答题

阅读下面材料,并解答下列各题:
在形如ab=N的式子中,我们已经研究过两种情况:
①已知a和b,求N,这是乘方运算;
②已知b和N,求a,这是开方运算;
现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算.
定义:如果ab=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记着b=logaN.
例如:因为23=8,所以log28=3;因为,所以
(1)根据定义计算:
①log381=______;②log33=______;③log31=______;
④如果logx16=4,那么x=______.
(2)设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数),
∵ax•ay=ax+y,∴ax+y=M•N∴logaMN=x+y,
即logaMN=logaM+logaN
这是对数运算的重要性质之一,进一步,我们还可以得出:
logaM1M2M3…Mn=______(其中M1、M2、M3、…、Mn均为正数,a>0,a≠1)
loga=______(a>0,a≠1,M、N均为正数).

查看答案和解析>>

同步练习册答案