精英家教网 > 初中数学 > 题目详情
(2013•佛山)如图,若∠A=60°,AC=20m,则BC大约是(结果精确到0.1m) (  )
分析:首先计算出∠B的度数,再根据直角三角形的性质可得AB=40m,再利用勾股定理计算出BC长即可.
解答:解:∵∠A=60°,∠C=90°,
∴∠B=30°,
∴AB=2AC,
∵AC=20m,
∴AB=40m,
∴BC=
AB2-AC2
=
1600-400
=
1200
=20
3
≈34.6(m),
故选:B.
点评:此题主要考查了勾股定理,以及直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•佛山)如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).
(1)求抛物线的函数表达式;
(2)求抛物线的顶点坐标和对称轴;
(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•佛山)并排放置的等底等高的圆锥和圆柱(如图)的主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•佛山)如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.参考公式:圆锥的侧面积S=πrl,其中r为底面半径,l为母线长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.
(1)叙述三角形全等的判定方法中的推论AAS;
(2)证明推论AAS.
要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.

查看答案和解析>>

同步练习册答案