精英家教网 > 初中数学 > 题目详情

如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是           

①②③④.

解析试题分析:如解答图所示:
结论①正确:证明△ACM≌△ABF即可;
结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;
结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;
结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.
试题解析:(1)结论①正确.理由如下:
∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,
∴∠6=∠CMN,又∵∠5=∠CMN,
∴∠5=∠6,
∴AM=AE=BF.

易知ADCN为正方形,△ABC为等腰直角三角形,
∴AB=AC.
在△ACM与△ABF中,

∴△ACM≌△ABF(SAS),
∴CM=AF;
(2)结论②正确.理由如下:
∵△ACM≌△ABF,
∴∠2=∠4,
∵∠2+∠6=90°,
∴∠4+∠6=90°,
∴CE⊥AF;
(3)结论③正确.理由如下:
证法一:∵CE⊥AF,
∴∠ADC+∠AGC=180°,
∴A、D、C、G四点共圆,
∴∠7=∠2,
∵∠2=∠4,
∴∠7=∠4,
又∵∠DAH=∠B=45°,
∴△ABF∽△DAH;
证法二:∵CE⊥AF,∠1=∠2,
∴△ACF为等腰三角形,AC=CF,点G为AF中点.
在Rt△ANF中,点G为斜边AF中点,
∴NG=AG,
∴∠MNG=∠3,
∴∠DAG=∠CNG.
在△ADG与△NCG中,

∴△ADG≌△NCG(SAS),
∴∠7=∠1,
又∵∠1=∠2=∠4,
∴∠7=∠4,
又∵∠DAH=∠B=45°,
∴△ABF∽△DAH;
(4)结论④正确.理由如下:
证法一:∵A、D、C、G四点共圆,
∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,
∴∠DGC=∠DGA,即GD平分∠AGC.
证法二:∵AM=AE,CE⊥AF,
∴∠3=∠4,又∠2=∠4,∴∠3=∠2
则∠CGN=180°-∠1-90°-∠MNG=180°-∠1-90°-∠3=90°-∠1-∠2=45°.
∵△ADG≌△NCG,
∴∠DGA=∠CGN=45°=∠AGC,
∴GD平分∠AGC.
综上所述,正确的结论是:①②③④,共4个.
考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:单选题

如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,E是?ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,=,则CF的长为 _________ 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x-y)的最大值是     

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,矩形台球桌ABCD的尺寸为2.7m1.6m,位于AB中点处的台球E沿直线向BC边上的点F运动,经BC边反弹后恰好落入点D处的袋子中,则BF的长度为          m.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知,且相似比为,若边上的中线,则边上的中线=        

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn―1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An1AnBn1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2014的阴影三角形共有__________个.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,已知△ABC∽△DEF,∠A=70°,∠C=50°,则∠E=    °.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为________.

查看答案和解析>>

同步练习册答案