
解:(1)∵∠ABC=∠AMC=60°,
而AB=AC,
∴△ABC为等边三角形,
∴△ABC的面积=

BC
2=

×36=9

;
(2)MA=MB+MC,理由如下:
∵BD=DM,∠AMB=∠ACB=60°,
∴△BDM为正三角形,
∴BD=BM,
∵∠ABC=∠DBM=60°,
∴∠ABC-∠DBC=∠DBM-∠DBC,
∴∠ABD=∠CBM,
在△ABD与△CBM 中,

,
∴△ABD≌△CBM(SAS),
∴AD=CM,
∴MA=MD+AD=MB+MC.
分析:(1)根据圆周角定理得到∠ABC=∠AMC=60°,加上AB=AC,则可判断△ABC为等边三角形,然后根据等边三角形的性质计算其面积;
(2)先判断△BDM为正三角形得到BD=BM,由∠ABC=∠DBM=60°得到∠ABD=∠CBM,则可根据“SAS”判断△ABD≌△CBM,所以AD=CM,于是MA=MD+AD=MB+MC.
点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等边三角形的判定与性质以及三角形全等的判定与性质.