精英家教网 > 初中数学 > 题目详情
(2001•温州)如图,在正方形ABCD中,AD=8,点E是边CD上(不包括端点)的动点,AE的中垂线FG分别交AD,AE,BC于点F,H,K交AB的延长线于点G.
(1)设DE=m,,用含m的代数式表示t;
(2)当时,求BG的长.

【答案】分析:(1)过点H作MN∥CD交AD,BC于M,N,根据矩形的性质及平行线的性质可得到FH:HK=HM:HN,从而可用含m的代数式表示t;
(2)过点H作HT⊥AB于T,根据正方形的性质及平行线的性质可求得BG的长.
解答:解:(1)过点H作MN∥CD交AD,BC于M,N,则四边形ABNM是矩形,
∴MN=AB=AD,
∵FG是AE的中垂线,
∴H为AE的中点,
∴MH=DE=m,HN=8-m,
∵AM∥BC,
∴FH:HK=HM:HN=(m):(8-m),
∴t=

(2)过点H作HT⊥AB于T,
当t=时,=,解得m=4,即DE=4,
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
∴AH=AE=2
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
点评:本题利用了中垂线的性质,正方形和矩形的性质,平行线分线段成比例,勾股定理,相似三角形的判定和性质求解.
练习册系列答案
相关习题

科目:初中数学 来源:2001年全国中考数学试题汇编《锐角三角函数》(02)(解析版) 题型:填空题

(2001•温州)如图,在四边形ABCD中,AB=8,BC=1,∠DAB=30°,∠ABC=60°,则四边形ABCD的面积为5,AD的长是   

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《圆》(03)(解析版) 题型:填空题

(2001•温州)如图,AB是⊙O的直径,AB=2,OC是⊙O的半径,OC⊥AB,点D在弧AC上,弧AD=2弧CD,点P是半径OC上一个动点,那么AP+PD的最小值等于   

查看答案和解析>>

科目:初中数学 来源:2001年浙江省温州市中考数学试卷(解析版) 题型:解答题

(2001•温州)如图,已知:点A,B、C、D在同一条直线上,CE∥DF,AE∥BF,且AE=BF.求证:AC=BD.

查看答案和解析>>

科目:初中数学 来源:2001年浙江省温州市中考数学试卷(解析版) 题型:填空题

(2001•温州)如图,AB是⊙O的直径,AB=2,OC是⊙O的半径,OC⊥AB,点D在弧AC上,弧AD=2弧CD,点P是半径OC上一个动点,那么AP+PD的最小值等于   

查看答案和解析>>

同步练习册答案