精英家教网 > 初中数学 > 题目详情
如图(1),已知A、B位于直线MN的两侧,请在直线MN上找一点P,使PA+PB最小,并说明依据.
如图(2),动点O在直线MN上运动,连接AO,分别画∠AOM、∠AON的角平分线OC、OD,请问∠COD的度数是否发生变化?若不变,求出∠COD的度数;若变化,说明理由.
精英家教网
分析:(1)显然根据两点之间,线段最短.连接两点与直线的交点即为所求作的点.
(2)根据角平分线的概念以及邻补角的概念即可证明.
解答:精英家教网解:(1)如图,连接AB交MN于点P,则P就是所求的点.理由:两点之间线段最短,

(2)∠COD的度数不会变化,
∵OC是∠AOM的平分线,
,∴∠COA=
1
2
∠AOM,
∵OD是∠AON的平分线,
∴∠AOD=
1
2
∠AON,
∵∠AOM+∠AON=180°,
∴∠COA+∠AOD=
1
2
∠AOM+
1
2
∠AON=
1
2
(∠AOM+∠AON)=90°.
点评:求两点之间的最短距离时,注意两点之间,线段最短;互为邻补角的两个角的角平分线互相垂直.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、中国足球队首次进入世界杯决赛圈,实现了近五十年的愿望.足球一般是由许多黑白相间的小皮块缝合而成的,黑块呈五边形,白块呈六边形(如图所示),已知黑块有12块,则白块有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,?ABCD中,已知AB=9cm,AD=6cm,BE平分∠ABC交DC边于点E,则DE等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2=
65
65
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.
(1)已知AB∥CD,EF∥MN,且∠BOH=110°,求∠DHF和∠CGN的度数.
(2)请你观察(1)中的结果,找出其中的规律,并用文字表述出来.
(3)根据(2)中的结论,若两个角的两边分别平行,且其中一个角的度数是另一个角的2倍,求这两个角的度数.

查看答案和解析>>

同步练习册答案