精英家教网 > 初中数学 > 题目详情

在⊙O中,半径OB垂直于直径MN,过点B的弦BC交MN于点A,分别连接MB,NB,求证:MB•NB=BA•BC.

解:连接CN,如图所示:
由题意得,MB=NB,
∴∠MNB=∠BCN.
∵∠ABN=∠NBC,
∴△ABN∽△NBC.
=
即NB•NB=BA•BC,
∵MB=NB,
∴MB•NB=BA•BC.
分析:先证明△ABN∽△NBC,得=,即NB•NB=BA•BC,又因为OB⊥MN,得MB=BN,所以MB•NB=BA•BC.
点评:本题考查了相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△内接于⊙,点的延长线上,sinB=,∠CAD=30°⑴求证:是⊙的切线;⑵若,求的长。

【解析】(1)连接OA,由于sinB=,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;

(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

【答案】14

【考点】轴对称-最短路线问题;勾股定理;垂径定理.

【专题】探究型.

【分析】先由MN=20求出⊙O的半径,再连接OA、OB,由勾股定理得出OD、OC的长,作点B关于MN的对称点B′,连接AB′,则AB′即为PA+PB的最小值,B′D=BD=6,过点B′作AC的垂线,交AC的延长线于点E,在Rt△AB′E中利用勾股定理即可求出AB′的值.

【解答】∵MN=20,

∴⊙O的半径=10,

连接OA、OB,

在Rt△OBD中,OB=10,BD=6,

∴OD==8;

同理,在Rt△AOC中,OA=10,AC=8,

∴OC==6,

∴CD=8+6=14,

作点B关于MN的对称点B′,连接AB′,则AB′即为PA+PB的最小值,B′D=BD=6,过点B′作AC的垂线,交AC的延长线于点E,

在Rt△AB′E中,

∵AE=AC+CE=8+6=14,B′E=CD=14,

∴AB′==14

故答案为:14

【点评】本题考查的是轴对称-最短路线问题、垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年福建省厦门市翔安区九年级适应性考试数学卷(解析版) 题型:填空题

如图,△内接于⊙,点的延长线上,sinB=,∠CAD=30°⑴求证:是⊙的切线;⑵若,求的长。

【解析】(1)连接OA,由于sinB=,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;

(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.

 

查看答案和解析>>

同步练习册答案