精英家教网 > 初中数学 > 题目详情

若ab≠1,且有a2+2010a+6=0及6b2+2010b+1=0,则数学公式的值是


  1. A.
    6
  2. B.
    数学公式
  3. C.
    2010
  4. D.
    数学公式
A
分析:把6b2+2010b+1=0的两边都除以b2,得到与a2+2010a+6=0一样的形式,所以a与为一个方程的两个根,然后利用根与系数的关系即可求出所求式子的值.
解答:由6b2+2010b+1=0得:+2010×+6=0,
又a2+2010a+6=0,所以得到a与都为x2+2010x+6=0的两根,
根据根与系数的关系得到:a•=6即=6.
故选A.
点评:此题考查学生灵活运用根与系数的关系化简求值,是一道中档题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

几千年来,人们给出勾股定理各种证法,有人统计,现在世界上已找到400多种证明方法,古希腊的数学家、哲学家毕达哥拉斯在客厅品茶,不小心推倒了桌上一个火柴盒,就在这一瞬间,他双眼放光,兴奋不已,从此毕达哥拉斯定理(现教材中勾股定理)诞生了.其证法是:如图,
精英家教网
设矩形ABCD为火柴盒侧面,将这个火柴盒移推至A‵B‵C‵D的位置,D不动,若设AB=a、BC=b、DB=c.则梯形A‵B‵BC的面积S2梯形A‵B‵BC=
1
2
(a+b)(a+b)=
1
2
(a+b)2,且又知梯形S梯形A‵B‵BC=S△ABD+S△DBB‵+S△BCD=
1
2
ab+
1
2
c2+
1
2
ab,故有
1
2
(a+b)2=
1
2
ab+
1
2
c2+
1
2
ab,则a2+b2+2ab=c2+2ab,即a2+b2=c2
请你再写出一种证明方法:

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景:
在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.我们把上述求△ABC面积的方法叫做构图法.
(1)若△ABC三边的长分别为
5
a,2
2
a,
17
a
(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
思维拓展:
(2)若△ABC三边的长分别为
m2+16n2
9m2+4n2
,2
m2+n2
(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积.
探索创新:
(3)已知a、b都是正数,a+b=3,求当a、b为何值时
a2+4
+
b2+25
有最小值,并求这个最小值.
(4)已知a,b,c,d都是正数,且a2+b2=c2,c
a2-d2
=a2,求证:ab=cd.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武侯区一模)已知a、b、c分别是△ABC的∠A、∠B、∠C的对边(c>b),关于x的方程x2-2(b+c)x+2bc+a2=0有两个相等的实数根,且∠B、∠C满足关系式
3
sin∠B=sin∠C
,△ABC的外接圆面积为64π.
(1)求a,b,c的长.
(2)若D、E、F分别为AB、BC、AC的中点,点P为AB边上的一个动点,PQ∥AC,且交BC于点Q,以PQ为一边向点B的异侧作正三角形PQH,设正三角形PQH与矩形EDAF的公共部分的面积为S,BP的长为
3
x.直接写出S与x之间的关系.
(3)在(2)的情况下,当x=4
3
时,求S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

综合题
阅读下列材料:
配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如解方程x2-4x+4=0,则(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.则有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0则有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根据以上材料解答下列各题:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三边,且a2+b2+c2-ac-ab-bc=0,试判断△ABC的形状,并说明理由.

查看答案和解析>>

同步练习册答案