精英家教网 > 初中数学 > 题目详情

在△ABC中,∠C=60°.两条角平分线AD,BE所在直线所成的角的度数是


  1. A.
    60°
  2. B.
    120°
  3. C.
    150°
  4. D.
    60°或120°
D
分析:由于AD,BE是△ABC的外角平分线还是内角平分线不能确定,故应分两种情况进行讨论.
解答:解:当AD与BE是△ABC内角平分线时,如图1所示:
在△ABC中,∵∠C=60°,
∴∠CAB+∠ABC=180°-60°=120°,
∵AD,BE分别是∠CAB与∠ABC的平分线,
∴∠OAB+∠OBA=(∠CAB+∠ABC)=×120°=60°,
∴∠AOB=180°-(∠OAB+∠OBA)=180°-60°=120°;
当当AD与BE是△ABC外角平分线时,如图2所示:
在△ABC中,∵∠C=60°,
∴∠CAB+∠ABC=180°-60°=120°,
∴∠FAB+∠GBA=360°-(∠CAB+∠ABC)=360°-120°=240°,
∵AD,BE分别是∠FAB与∠GBA的平分线,
∴∠OAB+∠OBA=(∠FAB+∠GBA)=×240°=120°,
∴∠AOB=180°-(∠OAB+∠OBA)=180°-120°=60°.
故选D.
点评:本题考查的是三角形内角和定理及角平分线的性质,解答此题时要注意进行分类讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案