精英家教网 > 初中数学 > 题目详情
如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作APCB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.
(1)令y=0,
得x2-1=0
解得x=±1,
令x=0,得y=-1
∴A(-1,0),B(1,0),C(0,-1);(2分)

(2)∵OA=OB=OC=1,
∴∠BAC=∠ACO=∠BCO=45°.
∵APCB,
∴∠PAB=45°.
过点P作PE⊥x轴于E,则△APE为等腰直角三角形,
令OE=a,则PE=a+1,
∴P(a,a+1).
∵点P在抛物线y=x2-1上,
∴a+1=a2-1.
解得a1=2,a2=-1(不合题意,舍去).
∴PE=3(4分).
∴四边形ACBP的面积S=
1
2
AB•OC+
1
2
AB•PE
=
1
2
×2×1+
1
2
×2×3=4;(6分)

(3)假设存在
∵∠PAB=∠BAC=45°,
∴PA⊥AC
∵MG⊥x轴于点G,
∴∠MGA=∠PAC=90°
在Rt△AOC中,OA=OC=1,
∴AC=
2

在Rt△PAE中,AE=PE=3,
∴AP=3
2
(7分)
设M点的横坐标为m,则M(m,m2-1)
①点M在y轴左侧时,则m<-1.

(ⅰ)当△AMG△PCA时,有
AG
PA
=
MG
CA

∵AG=-m-1,MG=m2-1.
-m-1
3
2
=
m2-1
2

解得m1=-1(舍去)m2=
2
3
(舍去).
(ⅱ)当△MAG△PCA时有
AG
CA
=
MG
PA

-m-1
2
=
m2-1
3
2

解得:m=-1(舍去)m2=-2.
∴M(-2,3)(10分).
②点M在y轴右侧时,则m>1

(ⅰ)当△AMG△PCA时有
AG
PA
=
MG
CA

∵AG=m+1,MG=m2-1
m+1
3
2
=
m2-1
2

解得m1=-1(舍去)m2=
4
3

∴M(
4
3
7
9
).
(ⅱ)当△MAG△PCA时有
AG
CA
=
MG
PA

m+1
2
=
m2-1
3
2

解得:m1=-1(舍去)m2=4,
∴M(4,15).
∴存在点M,使以A、M、G三点为顶点的三角形与△PCA相似
M点的坐标为(-2,3),(
4
3
7
9
),(4,15).(13分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,一次函数y=-2x的图象与二次函数y=-x2+3x图象的对称轴交于点B.
(1)写出点B的坐标______;
(2)已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一座抛物线拱桥架在一条河流上,这座拱桥下的水面离桥孔顶部3m时,水面宽6m,当水位上升1m时,水面宽多少m(结果保留根号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数图象的顶点坐标为M(3,-2),且与y轴交于N(0,
5
2
).
(1)求该二次函数的解析式,并用列表、描点画出它的图象;
(2)若该图象与x轴交于A、B两点,在对称轴右侧的图象上存在点C,使得△ABC的面积等于12,求出C点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将二次函数y=2x2-8x-5的图象沿它的对称轴所在直线向上平移,得到一条新的抛物线,这条新的抛物线与直线y=kx+1有一个交点为(3,4).
求:(1)新抛物线的解析式及后的值;
(2)新抛物线与y=kx+1的另一个交点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=2
3
,直线y=
3
x-2
3
经过点C,交y轴于点G.
(1)点C、D的坐标;
(2)求顶点在直线y=
3
x-2
3
上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=
3
x-2
3
平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,建立如图所示的平面直角坐标系.
(1)求这条抛物线所对应的函数关系式;
(2)在对称轴右边1m处,桥洞离水面的高是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某玩具厂授权生产工艺品福娃,每日最高产量为30只,且每日生产的产品全部出售.已知生产x只福娃的成本为R(元),每只售价P(元),且R,P与x的表达式分别为R=50+3x,P=170-2x.当日产量为多少时,可获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,图①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之间的距离均为15m,B1B5A1A5,将抛物线放在图②所示的直角坐标系中.
(1)直接写出图②中点B1、B3、B5的坐标;
(2)求图②中抛物线的函数表达式;
(3)求图①中支柱A2B2、A4B4的长度.

查看答案和解析>>

同步练习册答案