19£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OÎª×ø±êÔ­µã£¬µãA¡¢BµÄ×ø±ê·Ö±ðΪ£¨8£¬0£©¡¢£¨0£¬6£©£®¶¯µãQ´ÓµãO¡¢¶¯µãP´ÓµãAͬʱ³ö·¢£¬·Ö±ðÑØ×ÅOA·½Ïò¡¢AB·½Ïò¾ùÒÔ1¸öµ¥Î»³¤¶È/ÃëµÄËÙ¶ÈÔÈËÙÔ˶¯£¬Ô˶¯Ê±¼äΪt£¨Ã룩£¨0£¼t¡Ü5£©£®ÒÔPΪԲÐÄ£¬PA³¤Îª°ë¾¶µÄ¡ÑPÓëAB¡¢OAµÄÁíÒ»¸ö½»µã·Ö±ðΪC¡¢D£¬Á¬½ÓCD¡¢QC£®
£¨1£©µ±t=$\frac{5}{2}$ʱ£¬AD=4£¬QD=$\frac{3}{2}$£»
£¨2£©µ±tΪºÎֵʱ£¬Ïß¶ÎPQ×î¶Ì£¿
£¨3£©Éè¡÷QCDµÄÃæ»ýΪS£¬ÇóSµÄ×î´óÖµ£®

·ÖÎö £¨1£©Èçͼ1ÖУ¬×÷PE¡ÍOAÓÚE£®ÓÉPE¡ÎOB£¬ÍƳö$\frac{PA}{AB}$=$\frac{PE}{OB}$=$\frac{AE}{OA}$£¬µÃ$\frac{t}{10}$=$\frac{PE}{6}$=$\frac{AE}{8}$£¬ÍƳöPE=$\frac{3}{5}$t£¬AE=$\frac{4}{5}$t£¬ÓÉPE¡ÍAD£¬ÍƳöDE=AE=$\frac{4}{5}$t£¬ÍƳöAD=$\frac{8}{5}$t£¬OQ=t£¬Óɴ˰Ñt=$\frac{5}{2}$´úÈë¼´¿É½â¾öÎÊÌ⣮
£¨2£©Çó³öP¡¢QÁ½µãµÄ×ø±ê£¬¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽ£¬¹¹½¨¶þ´Îº¯ÊýÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´¿É½â¾öÎÊÌ⣮
£¨3£©·ÖÁ½ÖÖÇéÐηÖÀàÌÖÂÛ¢Ùµ±0£¼t¡Ü$\frac{40}{13}$ʱ£®¢Úµ± $\frac{40}{13}$£¼t¡Ü5ʱ£®·Ö±ðÇó½â¼´¿É£®

½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬×÷PE¡ÍOAÓÚE£®

¡ßA£¨8£¬0£©¡¢B£¨0£¬6£©£¬
¡àOB=6£¬OA=8£¬AB=$\sqrt{{6}^{2}+{8}^{2}}$=10£¬
¡ßPE¡ÎOB£¬
¡à$\frac{PA}{AB}$=$\frac{PE}{OB}$=$\frac{AE}{OA}$£¬
¡à$\frac{t}{10}$=$\frac{PE}{6}$=$\frac{AE}{8}$£¬
¡àPE=$\frac{3}{5}$t£¬AE=$\frac{4}{5}$t£¬
¡ßPE¡ÍAD£¬
¡àDE=AE=$\frac{4}{5}$t£¬
¡àAD=$\frac{8}{5}$t£¬
¡ßt=$\frac{5}{2}$£¬
¡àAD=4£¬OQ=$\frac{5}{2}$£¬
¡àQD=8-$\frac{5}{2}$-4=$\frac{3}{2}$£¬
¹Ê´ð°¸Îª4£¬$\frac{3}{2}$£®

£¨2£©ÓÉ£¨1£©¿ÉÖªQ£¨t£¬0£©£¬P£¨8-$\frac{4}{5}$t£¬$\frac{3}{5}$t£©£¬
¡àPQ=$\sqrt{£¨t-8+\frac{4}{5}t£©^{2}+£¨\frac{3}{5}t£©^{2}}$=$\sqrt{\frac{90}{25}{t}^{2}-\frac{144}{5}t+64}$=$\sqrt{\frac{18}{5}£¨t-4£©^{2}+\frac{32}{5}}$£¬
¡ß$\frac{18}{5}$£¾0£¬
¡àt=4ʱ£¬PQµÄÖµ×îС£¬×îСֵΪ$\frac{4\sqrt{10}}{5}$£®

£¨3£©ÔÚRt¡÷ACDÖУ¬CD=AC•sin¡ÏBAO=2t¡Á$\frac{3}{5}$=$\frac{6}{5}$t£®
¢Ùµ±0£¼t¡Ü$\frac{40}{13}$ʱ£¬
DQ=OA-OQ-AD=8-t-$\frac{8}{5}$t=8-$\frac{13}{5}$t£®
¡àS=$\frac{1}{2}$DQ•CD=$\frac{1}{2}$£¨8-$\frac{13}{5}$t£©•$\frac{6}{5}$t=-$\frac{39}{25}$t2+$\frac{24}{5}$t£®
¡ß-$\frac{b}{2a}$=$\frac{20}{13}$£¬0£¼$\frac{20}{13}$£¼$\frac{40}{13}$£¬
¡àµ±t=$\frac{20}{13}$ʱ£¬SÓÐ×î´óֵΪ $\frac{48}{13}$£»
¢Úµ± $\frac{40}{13}$£¼t¡Ü5ʱ£¬
DQ=OQ+AD-OA=t+$\frac{8}{5}$t-8=$\frac{13}{5}$t-8£®
¡àS=$\frac{1}{2}$DQ•CD=$\frac{1}{2}$£¨ $\frac{13}{5}$t-8£©•$\frac{6}{5}$t=$\frac{39}{25}$t2-$\frac{24}{5}$t£®
¡ß-$\frac{b}{2a}$=$\frac{20}{13}$£¬$\frac{20}{13}$£¼$\frac{40}{13}$£¬ËùÒÔSËætµÄÔö´ó¶øÔö´ó£¬
¡àµ±t=5ʱ£¬SÓÐ×î´óֵΪ15£¾$\frac{48}{13}$£¬
×ÛÉÏËùÊö£¬SµÄ×î´óֵΪ15£®

µãÆÀ ±¾Ì⿼²éÁËÔ²µÄ×ÛºÏÌ⣬Ö÷ÒªÀûÓÃÁ˽âÖ±½ÇÈý½ÇÐΣ¬¹´¹É¶¨Àí£¬Èý½ÇÐεÄÃæ»ý£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬¶þ´Îº¯ÊýµÄ×îÖµÎÊÌâµÈ֪ʶ£¬×ÛºÏÐÔ½ÏÇ¿£¬µ«ÄѶȲ»´ó£¬¹Ø¼üÔÚÓÚÒª¿¼ÂǵãQ¡¢DÁ½µãÖØºÏǰºóÁ½ÖÖÇé¿ö£¬ÕâÒ²ÊDZ¾ÌâÈÝÒ׳ö´íµÄµØ·½£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®¡÷ABCÖУ¬AB=AC£¬¡ÏBAC=40¡ã£¬ADÊǵױßBC±ßÉϵÄÖÐÏߣ¬BE¡ÍACÓÚµãE£¬½»ADÓÚµãF£¬Ôò¡ÏDFE µÄ¶ÈÊýÊÇ110¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÓÿÆÑ§¼ÇÊý·¨±íʾÕâ¸öÊý235 000 000Ϊ2.35¡Á108£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁÐ˵·¨²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®0¼È²»ÊÇÕýÊýÒ²²»ÊǸºÊýB£®¾ø¶ÔÖµ×îСµÄÊýÊÇ0
C£®Ò»¸öÓÐÀíÊý²»ÊÇÕûÊý¾ÍÊÇ·ÖÊýD£®ÊýaµÄµ¹ÊýÊÇ$\frac{1}{a}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ä³Ó°µú³ö×âµê¿ªÉèÁ½ÖÖ×âµú·½Ê½£ºÒ»ÖÖÊÇÁãÐÇ×âµú£¬Ã¿ÕÅÊÕ·Ñ1Ôª£»ÁíÒ»ÖÖÊÇ»áÔ±¿¨×âµú£¬»áԱÿÔ½»»áÔ±·Ñ12Ôª£¬×âµú·ÑÿÕÅ0.4Ôª£®Ð¡±ò¾­³£À´¸Ãµê×âµú£¬ÈôС±òÿÔÂ×âµúÊýÁ¿ÎªxÕÅ£®
£¨1£©·Ö±ðд³öÁ½ÖÖ×âµú·½Ê½ÏÂС±òÓ¦¸¶µÄ×âµú½ð¶î£»
£¨2£©Ð¡±òÿÔÂ×âµú¶àÉÙÕÅʱ£¬Á½ÖÖ×âµú·½Ê½µÄ·ÑÓÃÏàͬ£¿
£¨3£©ÈôС±òÔÚÒ»ÔÂÄÚ×â24Õŵú£¬ÊÔÎÊÑ¡ÓÃÄÄÖÖ×âµú·½Ê½ºÏË㣿
£¨4£©Ð¡±òÿÔÂ×âµú¶àÉÙÕÅʱѡȡÄÄÖÖ·½Ê½¸üºÏË㣿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÓÿÆÑ§¼ÆËãÆ÷¼ÆË㣺2$\sqrt{57}$-sin60¡ã=14.2£¨½á¹û¾«È·µ½0.1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÎÒÃǹ涨£¬Èô¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ìax=bµÄ½âΪb-a£¬Ôò³Æ¸Ã·½³ÌΪ¡°²î½â·½³Ì¡±£¬ÀýÈ磺2x=4µÄ½âΪ2£¬ÇÒ2=4-2£¬Ôò¸Ã·½³Ì2x=4ÊDzî½â·½³Ì£®
Çë¸ù¾ÝÉÏÊö¹æ¶¨½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÅжÏ3x=4.5ÊÇ·ñÊDzî½â·½³Ì£»
£¨2£©Èô¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì5x=m+1ÊDzî½â·½³Ì£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãA£¨2£¬0£©£¬µãB£¨6£¬4£©£¬µãPÊÇÖ±Ïßy=xÉÏÒ»µã£¬Èô¡Ï1=¡Ï2£¬ÔòµãPµÄ×ø±êÊÇ£¨3£¬3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª8¡Á2x=212£¬ÄÇôx=9£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸