精英家教网 > 初中数学 > 题目详情

如图,D是BC上一点,AD=BD,∠ADC=80°,∠BAC=70°,则∠B=________,∠C=________.

40°    70°
分析:由AD=BD,∠ADC=80°,根据等腰三角形与三角形外角的性质,即可求得∠B的度数,又由三角形内角和定理,即可求得∠C的度数.
解答:∵AD=BD,
∴∠BAD=∠B,
∵∠ADC=∠B+∠BAD,∠ADC=80°,
∴∠B=40°,
∵∠BAC=70°,
∴∠C=180°-∠B-∠BAC=70°.
故答案为:40°,70°.
点评:此题考查了等腰三角形的性质、三角形外角的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,D是BC上一点,AD平分∠BAC,AB=3,AC=2,若S△ABD=a,则S△ADC=
 
.(用a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,D是BC上一点,DE平分∠ADB交AB于E,DF⊥DE交AC于F,连接EF.
(1)试说明:DF平分∠ADC;
(2)若∠BDE=50°30′,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,D是BC上一点,E是AB上一点,AD、CE交于点P,且AE:EB=3:2,CP:CE=5:6,那么DB:CD=
1:3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,D是BC上一点,AB=AD,BC=DE.
(1)在条件:①∠C=∠E,②AC=AE中,选择②可得
△ABC≌△ADE
△ABC≌△ADE

(2)在(1)的条件下,求证:∠CDE=∠BAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,E是BC上一点,AB⊥BC,且AB=BC,过B点作BD⊥AE于O点,CD∥AE,在以下两个结论中,选择正确的一个结论,并加以证明.
(1)△ABE≌△BDC           (2)△ABO≌△BCD
解:我选择
(1)
(1)

证明如下:

查看答案和解析>>

同步练习册答案