精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中有一点A(
1
2
,-
3
2
),过A点作x轴的平行线l,在l上有一不与A点重合的点B,连接OA,OB.将OA绕O点顺时针方向旋转α°到OA1,OB绕O点逆时针方向旋转α°到OB1
(1)当B点在A点右侧时,如图(1).如果∠AOB=20°,∠A1OB=110°,α=
 
.这时直线AB1与直线A1B有何特殊的位置关系证明你的结论.
(2)如果B点的横坐标为t,△OAB的面积为S,直接写出S关于t的函数关式,并指出t的取值范围.
(3)当α=60时,直线B1A交y轴于D,求以D为顶点且经过A点的抛物线的解析式.
精英家教网
分析:(1)易知∠α=90°;
直线AB1与直线A1B可通过证△A1OB和AOB1全等得出∠AB1O=∠A1BO,因此两角加上一个相等的对顶角后也应该相等,由于∠B1OB=α=90°,因此A1B⊥AB1
(2)已知了A的坐标和B的横坐标即可得出AB的长和AB边上的高,根据三角形的面积计算公式即可得出S,t的函数关系式.(要注意的本题中,要保证线段的长均为正数)
(3)本题要分两种情况进行求解,以B在A点右侧为例进行说明.
设直线l与y轴的交点为M,根据A的坐标不难得出∠AOM=30°,∠OAM=60°,因此当α=60°时,A1恰好在直线l上,且A1,A关于y轴对称,由此可得出A1的坐标.求抛物线的解析式关键还需知道D点的坐标,根据(1)的全等三角形可得出∠OAB1=∠OA1B=60°,因此∠AOD=∠ADO=30°,D,O关于直线l对称由此可得出D点的坐标,然后用待定系数法即可求出抛物线的解析式.
解答:精英家教网解:(1)90.垂直,理由:
设AB1与OB交于C.
在△A1OB和△AOB1中,
OA1=OA
A1OB=∠AOB1
OB=OB1

∴△A1OB≌△AOB1
∴∠A1BO=∠AB1O.又∠AB1O+∠OCB1=90°,∠OCB1=∠ACB
∴∠ACB+∠A1BO=90°
∴B1A⊥A1B.

(2)当t>
1
2
时,S=
3
4
(t-
1
2

当t<
1
2
时,S=
3
4
(t-
1
2

(或x≠
1
2
时)S=
3
4
|t-
1
2
|.

(3)当B在A点右侧时.如图(2)(画图)
∵A(
1
2
,-
3
2
),若l与y轴交于M.则OM=
3
2
,MA=
1
2

∴∠AOM=30°α=60时,A1点在l上.
∴△OA1A是等边三角形.
∴∠AA1O=60度.
与(1)同理得△A1OB≌△AOB1
∴∠OAB1=∠OA1B=60°
∴B1A∥OA1
∴D(O,-
3
).
当B在A点左侧时,同理可得B1A∥OA1,D(O,-
3
).(可以证左侧,同理得右侧)
因此,所求解析式为y=2
3
x2-
3
点评:本题考查了图形的旋转变换、全等三角形的判定和性质、等边三角形的判定和性质、二次函数的应用等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、在平面直角坐标系中有两点:A(-2,3),B(4,3),C是坐标轴x轴上一点,若△ABC是直角三角形,则满足条件的点C共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中有一直角梯形OABC,∠AOC=90°,AB∥OC,OC精英家教网在x轴上,过A、B、C三点的抛物线表达式为y=-
1
18
x2+
4
9
x+10

(1)求A、B、C三点的坐标;
(2)如果在梯形OABC内有一矩形MNPO,使M在y轴上,N在BC边上,P在OC边上,当MN为多少时,矩形MNPO的面积最大?最大面积是多少?
(3)若用一条直线将梯形OABC分为面积相等的两部分,试说明你的分法.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中有两点P(-1,1),Q (2,2),函数y=kx-1的图象与线段PQ延长线相交(交点不包括Q),则实数k的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中有一个Rt△OAC,点A(3,4),点C(3,0)将其沿直线AC翻折,翻折后图形为△BAC.动点P从点O出发,沿折线0?A?B的方向以每秒2个单位的速度向B运动,同时动点Q从点B出发,在线段BO上以每秒1个单位的速度向点O运动,当其中一个点到达终点时,另一点也随之停止运动.设运动的时间为t(秒).
(1)设△OPQ的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围;
(2)如图2,固定△OAC,将△ACB绕点C逆时针旋转,旋转后得到的三角形为△A′CB′设A′B′与AC交于点D当∠BCB′=∠CAB时,求线段CD的长;
(3)如图3,在△ACB绕点C逆时针旋转的过程中,若设A′C所在直线与OA所在直线的交点为E,是否存在点E使△ACE为等腰三角形?若存在,求出点E的坐标;若不存在,请说明理由.精英家教网
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中有一个平行四边形ABCD,如果将此平行四边形沿x轴正方向移动3个单位,则各点坐标的变化特征是怎样的?

查看答案和解析>>

同步练习册答案