精英家教网 > 初中数学 > 题目详情
(2012•北京)已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.
求证:BC=ED.
分析:首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再有条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.
解答:证明:∵AB∥CD,
∴∠BAC=∠ECD,
在△BAC和△ECD中
AB=EC
∠BAC=∠ECD
AC=CD

∴△BAC≌△ECD(SAS),
∴CB=ED.
点评:此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•北京二模)已知:在某个一次函数中,当自变量x=2时,对应的函数值是1;当自变量x=-4时,对应的函数值是10.求自变量x=2012时,该函数对应的函数值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)已知
a
2
=
b
3
≠0
,求代数式
5a-2b
a2-4b2
•(a-2b)
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=
23
,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)已知二次函数y=(t+1)x2+2(t+2)x+
32
在x=0和x=2时的函数值相等.
(1)求二次函数的解析式;
(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值;
(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围.

查看答案和解析>>

同步练习册答案