精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,E、F分别是CB,AB的中点,连接CF并延长,与DA的延长线交于点M,连接DE交CF于点P,连接AP,则有下列结论:①∠BCF=∠CDE;②AP=AD:③CM=CD+DE;④S△CDM=5S四边形EPFB,其中正确的结论有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
分析:根据正方形的性质,即可得∠DCE=∠B=90°,CD=BC=AB,又由E、F分别是CB,AB的中点,利用SAS即可判定△DCE≌△CBF,根据全等三角形的对应边相等,即可判定①正确;根据全等三角形对应角相等,即可得DE⊥CF,在利用ASA证得△BCF≌△AMF,即可得到AD=AM,然后利用直角三角形斜边上的中线等于斜边的一半,即可判定②正确;由△DCE≌△CBF,可得CF=DM,根据直角三角形的性质,可得FM>AM,即FM>CD,可判定③错误;利用相似三角形的性质:相似三角形的面积比等于相似比的平方,即可判定④正确.
解答:∵四边形ABCD是正方形,
∴∠DCE=∠B=90°,CD=BC=AB,
∵E、F分别是CB,AB的中点,
∴BF=AB,CE=BC,
∴BF=CE,
∴△DCE≌△CBF(SAS),
∴∠BCF=∠CDE,
故①正确;
∵∠CDE+∠CEP=90°,
∴∠BCF+∠CEP=90°,
∴∠CPE=90°,
即CF⊥DE,
∵BF=AF,∠B=∠BAM=90°,∠BFC=∠AFM,
∴△BCF≌△AMF(ASA),
∴AM=BC,
∴AD=AM,
∴AP=AD,
故②正确;
∵△DCE≌△CBF,
∴CF=DE,
∵∠FAM=90°,
∴FM>AM,
即FM>CD,
∴CM=CF+FM=DE+FM>CD+DE;
故③错误;
设CE=a,S△CDM=b,则BC=2a,AB=AD=AM=CD=2a,BF=AF=a,
∴MD=AD+AM=4a,
∴CF==a,
∵∠BCF=∠PCE,∠B=∠CPE=90°,
∴△CPE∽△CBF,

∴S△CDM=5b,
∴S四边形EPFB=4b,
∵BC∥AD,
∴△CPE∽△MPD,
=
∴S△MPD=16b,
=
∴S△CPD=4b,
∴S△CDM=S△CPD+S△MPD=4b+16b=20b,
∴S△CDM=5S四边形EPFB
故④正确.
∴其中正确的结论有①②④.
故选C.
点评:此题考查了正方形的性质、相似三角形的判定与性质、全等三角形的判定与性质、直角三角形的性质等知识.此题综合性较强,难度较大,解题的关键是注意相似三角形与全等三角形的判定,以及其性质的灵活应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案