如图1,在平面直角坐标系中,直线l:沿x轴翻折后,与x轴交于点A,与y轴交于点B,抛物线与y轴交于点D,与直线AB交于点E、点F(点F在点E的右侧).
(1)求直线AB的解析式;
(2)若线段DF∥x轴,求抛物线的解析式;
(3)如图2,在(2)的条件下,过F作FH⊥x轴于点G,与直线l交于点H,在抛物线上是否存在P、Q两点(点P在点Q的上方),PQ与AF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出P、Q的坐标,若不存在,请说明理由.
解:(1)设直线AB的解析式为.
直线与x轴、y轴交点分别为(-2,0),(0,)
沿x轴翻折,则直线、直线AB与x轴交于同一点(-2,0)
∴A(-2,0).与y轴的交点(0,)与点B关于x轴对称
∴B(0,)
∴解得,.
∴直线AB的解析式为 .
(2)抛物线的顶点为P(h,0),抛物线解析式为:=.
∴D(0,).∵DF∥x轴,∴点F(2h,),
又点F在直线AB上,∴.
解得 ,.(舍去)
∴抛物线的解析式为.
(3)过M作MT⊥FH于T,
∴Rt△MTF∽Rt△AGF.
∴.
设FT=3k,TM=4k,FM=5k.
则FN=-FM=16-5k.
∴.
∵=48,
又.
∴.
解得或(舍去).
∴FM=6,FT=,MT=,GN=4,TG=.
∴M(,)、N(6,-4).
∴直线MN的解析式为:.
联立与,求得P(1,); Q(3,0)
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中数学 来源:同步轻松练习 八年级 数学 上 题型:059
学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图)
(1)按照这种规定填写下表:
(2)根据表中的数据,将s作为纵坐标,n作为横坐标,在如图所示的平面直角坐标系中找出相应各点.
(3)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数图象上,求出该函数的解析式,并利用你探求的结果,求出当n=10时,s的值.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京海淀区九年级第一学期期中测评数学试卷(解析版) 题型:解答题
阅读下面的材料:
小明在研究中心对称问题时发现:
如图1,当点为旋转中心时,点绕着点旋转180°得到点,点再绕着点旋转180°得到点,这时点与点重合.
如图2,当点、为旋转中心时,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,小明发现P、两点关于点中心对称.
(1)请在图2中画出点、, 小明在证明P、两点关于点中心对称时,除了说明P、、三点共线之外,还需证明;
(2)如图3,在平面直角坐标系xOy中,当、、为旋转中心时,点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点. 继续如此操作若干次得到点,则点的坐标为(),点的坐为.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com