精英家教网 > 初中数学 > 题目详情

如图,已知∠BAC=∠ABD,AC=BD,O是AD与BC的交点,E是AB的中点.试判断OE和AB的位置关系,并证明你的结论.

答案:
解析:

  解:OE⊥AB.

  证明:在△BAC和△ABD中,

  因为所以△BAC≌△ABD.

  所以∠OBA=∠OAB.所以OA=OB.

  又因为AE=BE,所以OE⊥AB.


练习册系列答案
相关习题

科目:初中数学 来源:中学学习一本通 数学 七年级下册 北师大课标 题型:044

如图,已知∠BAC=∠DAE,∠ABD=∠ACE,BD=CE.你能说明AB=AC,AD=AE吗?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:1+1轻巧夺冠 同步讲解 九年级数学(下) 华东师大版 题型:047

如图,已知∠BAC=,AB=AC,BD⊥DE,CE⊥DE,垂足分别为D、E.求证:DE=BD+CE

查看答案和解析>>

科目:初中数学 来源:同步练习  七年级数学  下册 题型:044

如图,已知∠BAC=∠CAE=∠EAD,试问△ABC中哪个角最小?哪个角最大?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:新课标教材导学  数学九年级(第一学期) 题型:047

证明题

如图,已知∠BAC=,AB=AC,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.

查看答案和解析>>

同步练习册答案