精英家教网 > 初中数学 > 题目详情
设函数y=x2-(2k+1)x+2k-4的图象如图所示,它与x轴交于A,B两点,且线段OA与OB的长度之比为1:3,则k=______.
y=x2-(2k+1)x+2k-4,令y=0,得到x2-(2k+1)x+2k-4=0,
设A(a,0),B(b,0),
可得x2-(2k+1)x+2k-4=0的两个解分别为a,b(a<0,b>0),
则有a+b=2k+1,ab=2k-4,
又线段OA与OB的长度之比为1:3,即-a:b=1:3,
∴b=-3a,
∴a-3a=2k+1,a•(-3a)=2k-4,即a=-
1
2
(2k+1)=-k-
1
2
①,-3a2=2k-4②,
①代入②消去a得:-3(-k-
1
2
2=2k-4,即12k2+20k-13=0,
分解因式得:(2k-1)(6k+13)=0,
解得:k=
1
2
或k=-
13
6

∵抛物线开口向上,且对称轴在y轴右边,
∴-(2k+1)<0,即k>-
1
2
,故k=-
13
6
舍去,
∴k=
1
2

故答案为:
1
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=x2+2x-3与x轴的两个交点分别为A、B,点A在点B的左侧,与y轴交于点C,顶点为D,直线y=kx+b经过点A、C;
(1)求点D的坐标和直线AC的解析式;
(2)点P为抛物线上的一个动点,求使得△ACP的面积与△ACD的面积相等的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=-x2+2(m+1)x+m+3与x轴交于A,B两点,若OA:OB=3:1,求m的值.______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2-2x-3与x轴相交于A、B两点,抛物线上有一点P,且△ABP的面积为6.
(1)求A与B的坐标;
(2)求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.6,x2=(  )
A.-1.6B.3.2C.4.4D.以上都不对

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下表是满足二次函数y=ax2+bx+c的五组数据,x1是方程ax2+bx+c=0的一个解,则下列选项中正确的是(  )
x1.61.82.02.22.4
y-0.80-0.54-0.200.220.72
A.1.6<x1<1.8B.1.8<x1<2.0C.2.0<x1<2.2D.2.2<x1<2.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
1
2
x2+(6-
m2
)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.
(1)求m的值;
(2)写出抛物线解析式及顶点坐标;
(3)根据二次函数与一元二次方程的关系,将此题的条件换一种说法写出来.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

根据下列表格中的对应值:判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解x的范围最可能是(  )
x0.750.80.850.9
ax2+bx+c-0.25-0.040.190.44
A.x<0.75B.0.75<x<0.8C.0.8<x<0.85D.0.85<x<0.9

查看答案和解析>>

同步练习册答案