精英家教网 > 初中数学 > 题目详情
我们知道,利用三角形全等可以证明两条线段相等.但是我们会碰到这样的“和差”问题:“如图①,AD为△ABC的高,∠ABC=2∠C,证明:CD=AB+BD”.我们可以用“截长、补短”的方法将这类问题转化为证明两条线段相等的问题:在CD上截取DE=BD,连结AE.
(1)请补写完这个证明:
(2)运用上述方法证明:如图②,AD平分∠BAC,∠ABC=2∠C,证明:BD=AC-AB.
分析:(1)在CD上截取DE=BD,连结AE,推出AB=AE,根据∠B=2∠C,∠AEB=∠C+∠EAC求出∠C=∠EAC,推出EC=AE=AB,即可得出答案.
(2)证△BAD≌△EAD,推出DE=BD,∠B=∠AED,推出∠C=∠EDC,求出DE=EC=DB,即可得出答案.
解答:(1)证明:在CD上截取DE=BD,连结AE,
∵AD⊥BC,
∴AB=AE,
∴∠B=∠AEB,
∵∠B=2∠C,∠AEB=∠C+∠EAC,
∴∠C=∠EAC,
∴EC=AE=AB,
∴CD=CE+DE=AB+BD.

(2)证明:在AC上截取AE=AB,连接DE,
∵AD平分∠BAC,
∴∠1=∠2,
在△BAD和△EAD中
AD=AD
∠1=∠2
AB=AE

∴△BAD≌△EAD,
∴DE=BD,∠B=∠AED,
∵∠B=2∠C,∠AEB=∠C+∠EDC,
∴∠C=∠EDC,
∴DE=EC=DB,
∵AC-AE=EC,EC=BD,AE=AB,
∴BD=AC-AB.
点评:本题考查了等腰三角形的性质和判定,全等三角形的性质和判定,三角形外角性质的应用,关键是能正确作出辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:
(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:
AO
AD
=
2
3

(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足
AO
AD
=
2
3
,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;
(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究
S四边形BCHG
S△AGH
的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道,证明三角形内角和定理的一种思路是力求将三角形的三个内角转化到同一个顶点的三个相邻的角,从而利用平角定义来得到结论,你能想出多少种不同的方法呢?同学之间可相互交流.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

  我们知道,证明三角形内角和定理的一种思路是力求将三角形的三个内角转化到同一个顶点的三个相邻的角,从而利用平角定义来得到结论,你能想出多少种不同的方法呢?同学之间可相互交流.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我们知道,证明三角形内角和定理的一种思路是力求将三角形的三个内角转化到同一个顶点的三个相邻的角,从而利用平角定义来得到结论,你能想出多少种不同的方法呢?同学之间可相互交流.

查看答案和解析>>

同步练习册答案