精英家教网 > 初中数学 > 题目详情

在△ABC中,已知AB=10,AC=12,BC边上的高AD=8,求BC的长.

解:分两种情况:
①若高在△ABC的内部.
∵AD⊥BC,
∴AB2=AD2+BD2,AC2=AD2+CD2
∴BD===6,CD===4
∴BC=BD+DC=6+4
②若高在△ABC的外部,同理可得
BD===6,CD===4
∴BC=DC-BD=4-6;
综上所述,BC的长为4±6.
分析:此题需要分类讨论:高在△ABC的内部和外部两种情况.然后利用勾股定理分别求得BD、CD的长度,然后根据线段间的和差关系来求BC的长度即可.
点评:本题考查了勾股定理.勾股定理应用的前提条件是在直角三角形中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、(1)在△ABC中,已知∠B=∠C+20°,∠A+∠B=140°,求△ABC的各个内角的度数是多少?
(2)如图,将△ABC纸片沿MN折叠所得的粗实线围成的图形的面积与原△ABC的面积之比为3:4,且图中3个阴影三角形的面积之和为12cm2,则重叠部分的面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•雅安)在△ABC中,已知∠A、∠B都是锐角,且sinA=
3
2
,tanB=1,则∠C的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知∠A=80°,则∠B、∠C的角平分线相交所成的钝角为
130°
130°

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.在下列结论中:①∠C=72°;②BD是∠ABC的平分线;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.上述结论中,正确的有
①②④⑤
①②④⑤
.(填写序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知∠A=∠C-∠B,且∠A=70°,则∠B的度数=
20°
20°

查看答案和解析>>

同步练习册答案